Python社区  »  Python

1.7 万 Star!一个简单实用的 Python 进度条库

Python开发者 • 1 月前 • 43 次点击  

【导读】:有的 Python 程序较大,执行需要花费较长的时间,有的用户在“盲目”地等待运行结果,但又不能明确知道程序进展到什么程度的时候,很有可能因心情急躁而终止程序。

本文介绍的这个有着 1.7 万 Star 的开源库,就能解决这个烦恼。

https://github.com/tqdm/tqdm

1、Tqdm 简介

使用 Python Tqdm 进度条库,可以让 python 程序执行进度可视化。


示例

在阿拉姆语(Aramaic)、希伯来语(Hebrew)、和阿拉伯语(Arabic)中,闪米特语(Semitic)词根q-d-m通常与前进取得进步的意思挂钩。例如,阿拉伯语单词 taqaddum (تقدّم) 的意思是“进步”。进步是重要的,就像每一部令人愉悦的电影都会向你传达一个哲理——旅途和目的地一样重要。

大多数程序都有一个明确目标,那就是程序运行的最终(结束)状态,成功还是失败!但是往往有时候程序的运行可能需要很长时间。尽管计算机没有情感,不在乎程序执行时间的长短,可是人们是在乎的。

随着时间推移,程序运行人员或用户的疑问会不断蔓延(程序崩溃了吗?磁盘跳动了吗?操作系统是否将所有计算资源分配给了其他任务?)当程序运行过程中长时间没有任何的进展迹象时,程序运行人员可能会疑虑、烦躁,不愿意继续等待下去。而本文讲的 tqdm 库便有助于明确显示程序的执行进度。

2、使用方法

tqdm 库模块可以在命令控制台一起使用,但是也支持我最喜欢的开发环境之一的 Jupyter notebook。如果想在 Jupyter notebook 中使用 tqdm,notebook 模块与 tqdm 接口兼容,需要导入 notebook 子模块并安装ipywidget

这就意味着你可以在导入 tqdm 库操作之前做一下条件判断,这个判断方法是检查_main_模块中是否有get_ipython全局变量。虽然上面这个判断导库方法是一个启发式的,但它是一个相当准确的方法:

import sys
if hasattr(sys.modules["__main__"],"get_ipython"):
    from tqdm import notebook as tqdm
else:
    import tqdm

举个最简单的情况来助于理解一下,某程序需要执行一定数量的迭代(迭代次数预先可知),但是这些迭代中的每一次迭代花费大约相同的时间。例如,一个可以计算任意数字平方根的算法,算法是从1开始,然后计算一个进度估计。

def improve_guess(rt, n):
    return (rt + n/rt) / 2

对以上代码的少许改进可以让你更容易理解:

guess = 1
target = 2
for i in tqdm.trange(10):
    guess = improve_guess(guess, target)

精确到小数点后十位:

round(2 - guess*guess, 10)
0.0

再举一个稍微复杂的 tqdm 例子,当处理的元素数量已知且计算每个元素的时间相似。例如,计算一些随机数字的乘机:




    
import random
numbers = [random.uniform(02.8for i in range(100)]
numbers[:5]
[2.6575636572230916,
0.1286674965830302,
1.0634250104041332,
1.1760969844376505,
0.45192978568125486]

数值元素有了,接下来使用 tqdm 显示进度条,使用 tqdm 最简单的方法是封装 Python 中可迭代的对象。

result = 1
for num in tqdm.tqdm(numbers):
    result *= num
result
2.4081854901728303

但是,不是所有的事情都是可预测的,其中不可预测的事情之一是网络速度。下载大文件时,衡量进度的唯一的方法是显示已经下载了多少文件:

url = "https://www.python.org/ftp/python/3.9.0/Python-3.9.0.tgz"
import httpx
with httpx.stream("GET", url) as response:
    total = int(response.headers["Content-Length"])
    with tqdm.tqdm(total=total) as progress:
        for chunk in response.iter_bytes():
            progress.update(len(chunk))

有时,“嵌套”进度条是有意义的。例如,如果正在下载一个目录,则需要一个跟踪文件的进度条和每个文件的进度条。下面是一个示例(但没有实际下载目录):

files = [f"vid-{i}.mp4" for i in range(4)]
for fname in tqdm.tqdm(files, desc="files"):
    total = random.randrange(10**92 * 10**9)
    with tqdm.tqdm(total=total, desc=fname) as progress:
        current = 0
        while current             chunk_size = min(random.randrange(10**310**5), total - current)
            current += chunk_size
            if random.uniform(01) 0.01:
                time.sleep(0.1)
            progress.update(chunk_size)

因此,如果你的程序需要一段时间才能显示最终结果,为了避免用户感到沮丧:显示它的进度情况!



- EOF -


推荐阅读  点击标题可跳转

1、黑入苹果特斯拉竟如此容易!这位鬼才的攻击方法火了,微软等 35 家公司一起悬赏

2、1 万 Star !这个 Python OCR 神器能轻松识别 80 多种语言!

3、这 30 个细节,决定了数据可视化的质量


觉得本文对你有帮助?请分享给更多人

推荐关注「Python开发者」,提升Python技能

点赞和在看就是最大的支持❤️

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/107794
 
43 次点击  
分享到微博