Py学习  »  机器学习算法

了解深度学习各种层的实现,看这一篇就够了!

进击的Coder • 5 年前 • 517 次点击  

点击蓝字关注这个神奇的公众号~

文章来自:https://leonardoaraujosantos.gitbooks.io
原文作者:Leonardo Araujo dos Santos
作者:石文华
编辑:田 旭

简介

  • 一、relu层

    • 1、前向传播

    • 2、反向传播

  • 二、dropout层

    • 1、dropout工作原理

    • 2、在哪里使用dropout

    • 3、dropout的实现

    • 4、dropout的功效

    • 5、python实现dropout的前向传播

    • 6、python实现dropout的反向传播

  • 三、卷积层

    • 5.1 Im2col

    • 5.2前向传播计算图

    • 5.3反向传播图

    • 5.4小案例

    • 1、前向传播

    • 2、python实现卷积层的前向传播

    • 3、反向传播

    • 4、python实现卷积的反向传播

    • 5、卷积运算转换为矩阵运算

  • 四、池化层

    • 1、python实现池化层的前向传播

    • 2、python实现池化层的反向传播

一、relu 层

如何在Python中实现ReLU层?

简而言之,relu层就是输入张量通过一个非线性的relu函数,得到输出,而不改变其空间或者深度信息

 
 


从上图可以看出,所有大于0的保持不变,而小于零的变为零。此外,空间信息和深度也是相同的

relu函数作为激活函数,具有以下功能:

  1. 易于计算(前向/反向传播),采用sigmoid函数作为激活函数时候(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相当大,而采用Relu激活函数,整个过程的计算量节省很多。

  2.  深度模型中受消失梯度的影响要小得多,对于深层网络,sigmoid函数反向传播时,很容易就出现梯度消失的情况(在sigmoid函数接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。 

  3. 如果你使用大的学习率,他们可能会不可逆转地死去,因为当一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了。这个神经元的梯度将一直都是0了。

1、前向传播

将所有小于0的数变成0,大于0的数保持不变,空间和深度信息保持不变。

python实现relu的前向传播:

2、反向传播

在前向传播的时候,我们对每个输入X=[x1,x2,x3]应用了max(0,x)函数,所以在反向传播的时候,小于0的元素,梯度dx等于0:


python实现relu 反向传播:

二、Dropout 层

Dropout是一种用于防止神经网络过度拟合的技术,你还可以使用L2正则化防止过拟合。

下面是分类的错误率,可以发现使用了dropout之后错误率更低:

和其他正则化技术一样,使用dropout会使得训练损失稍稍恶化,但是模型的泛化能力却更好,因为如果我们的模型过于复杂(更多层或者更多神经元),模型就很可能过拟合,下面是训练和验证集上的损失情况,以及他们中有无dropout情况。 

1、dropout工作原理

在训练期间,随机的选择一定比例的神经元,让它停止工作,如下图所示,这样泛化能力更好,因为你的网络层的不同的神经元会学习相同的“概念”。在测试阶段,不需要使用dropout.

2、在哪里使用dropout

通常会在全连接层使用dropout,但也可以在最大池化后使用dropout,从而产生某种图像噪声增强。

3、dropout的实现

为了实现某个神经元的失活,我们在前向传播过程中创建一个掩码(0和1),此掩码应用于训练期间的层的输出,并缓存以供以后在反向传播中使用。如前所述,这个dropout掩码只在训练中使用。

在反向传播中,我们对被激活的神经元感兴趣(我们需要将掩码保存为前向传播),这些被选中的神经元中,使用反向传播,失活的神经元没有可学习的参数,仅仅是输入x,反向传播返回dx。

4、dropout的功效

Dropout背后理念和集成模型很相似。在Drpout层,不同的神经元组合被关闭,这代表了一种不同的结构,所有这些不同的结构使用一个的子数据集并行地带权重训练,而权重总和为1。

如果Dropout层有 n 个神经元,那么会形成2^n个不同的子结构。在预测时,相当于集成这些模型并取均值。这种结构化的模型正则化技术有利于避免过拟合。

Dropout有效的另外一个视点是:由于神经元是随机选择的,所以可以减少神经元之间的相互依赖,从而确保提取出相互独立的重要特征。

5、python实现dropout的前向传播

6、python实现dropout的反向传播

三、卷积层


简单的说,卷积层所做的工作就是对输入的特征图应用卷积算子,卷积核的个数是输出特征图的深度。下面我们介绍一下相关的参数:

  • N:批处理大小(4d张量上的图像数) 

  • F:卷积层上的滤波器个数

  • kW/kH:内核宽度/高度(通常我们使用方形卷积核,kW=kH) 

  • H/W:图像高度/宽度(通常H=W) 

  • H'/W':卷积图像高度/宽度(如果使用适当的填充,则与输入相同) 

  • Stride:卷积滑动窗口将要移动的像素数。 

  • Padding:将0添加到图像的边框,以保持输入和输出大小相同。 

  • Depth:输入特征图的深度(如输入为RGB图像则深度为3) 

  • Output depth:输出的特征图的深度(与F相同)

1、前向传播

在前向传播过程中,我们用不同的过滤器“卷积”输入,每个过滤器将在图像上寻找不同的特征。 


在这里观察到所有来自第一层的神经元共享相同的权重集,不同的过滤器得到不同的特征。

2、python实现卷积层的前向传播

3、反向传播

为了更好的理解,这里使用1维卷积来理解卷积层的反向传播,2维的也类似。

输入信号为X=[x0,x1,x2,x3,x4],参数为W=[w0,w1,w2],不使用padding,卷积之后的结果是:Y=[y0,y1,y2],这里Y = X * flip(W),flip可以看作是180度的旋转。

现在我们使用计算图来表示,并且加上一个偏差,通过观察可以发现这个过程跟全连接层类似,不同之处在于卷积核可以使得权重共享。 

现在来看反向传播



向后追踪计算图,反向传播可以表示为以下的公式

意味着损失值随着输入进行变化,由上图可以看出。

注意: 
dX跟X大小相同,所以我们需要进行填充 
dout跟Y大小相同,在本例中为3(渐变输入) 
为了节省编程工作量,我们将梯度的计算采用卷积的形式 
在dX梯度上,所有元素都乘以W,所以我们可能会对W和dout进行卷积操作 
1d卷积的输出尺寸计算公式:outputSize=(InputSize-KernelSize+2P)+1, 
我们期望的尺寸是3,由于原始输入尺寸是3,并且我们将与也有3个元素的W矩阵进行卷积。所以我们需要用2个零填充输入,之后再进行卷积,就可以得到尺寸为3的输出。

就卷积而言:

根据链式法则,求损失函数对各个参数的偏导:

再次查看从图表中得到的表达式,可以将它们表示为dout和X之间的卷积。同样,由于输出将是3个元素,因此不需要进行填充。

就卷积的计算而言,

如果将X看成是卷积核,而dout看做输入信号,则:

对于偏差,计算将类似于全连接层。 基本上我们每个过滤器有一个偏差,计算如下:

4、python实现卷积的反向传播

5、卷积运算转换为矩阵运算

使用矩阵运算,能够使得运算速度更快,但也会消耗更多的内存。

5.1 Im2col

前面的代码,使用的是for循环来实现卷积,运算速度不够快,在本节中,我们将学习如何使用矩阵运算来实现卷积,首先,卷积是内核过滤器和它移动之后在图像上选择的区域之间的点积,如果我们在内存上扩展所有可能的窗口并将点积作为矩阵运算,运算速度将更快,但内存的消耗也会更大。

例如,输入图片为227*227*3,卷积核为11*11*3,步长为4,padding为0,进行卷积运算的时候,我们可以将卷积核在输入图片上采样的11*11*3大小的像素块(感受野)拉伸为大小为11*11*3=363的列向量,227*227*3大小的图片,又有步长为4,padding为0,卷积之后的宽高计算方式为(227-11)/4)+1=55,所以采样之后得到55*55个11*11*3大小的像素块(感受野),最终可以得到尺寸为363*3025的输出矩阵X_col,(3025由55*55得到,表示有3025个感受野)

总结一下,如何计算im2col输出的大小:

[img_height, img_width, img_channels] = size(img); 
newImgHeight = floor(((img_height + 2*P - ksize) / S)+1); 
newImgWidth = floor(((img_width + 2*P - ksize) / S)+1); 
cols = single(zeros((img_channels*ksize*ksize),(newImgHeight * newImgWidth))); 
卷积核也进行类似的伸展,假设有96个大小为11*11*3的卷积核,通过im2col函数之后,得到96*363的矩阵W_col.

将图像和卷积核转换之后,卷积操作就变成了简单的矩阵乘法运算,这个例子中,W_col(96*363)c乘以X_col(363*3025)得到的矩阵是96*3025,最后可以重塑为55*55*96,重塑可以定义一个col2im的函数来实现。

5.2前向传播计算图

下图是前向传播中使用im2col之后的计算图,输入为4*4*3,步长为1,padding为0,卷积核大小为2*2,卷积核个数为1:


前向传播代码如下:

def conv_forward_naive(x, w, b, conv_param):
 """
 A naive implementation of the forward pass for a convolutional layer.
 The input consists of N data points, each with C channels, height H and width
 W. We convolve each input with F different filters, where each filter spans
 all C channels and has height HH and width HH.
 Input:
 - x: Input data of shape (N, C, H, W)
 - w: Filter weights of shape (F, C, HH, WW)
 - b: Biases, of shape (F,)
 - conv_param: A dictionary with the following keys:
   - 'stride': The number of pixels between adjacent receptive fields in the
     horizontal and vertical directions.
   - 'pad': The number of pixels that will be used to zero-pad the input.
 Returns a tuple of:
 - out: Output data, of shape (N, F, H', W') where H' and W' are given by
   H' = 1 + (H + 2 * pad - HH) / stride
   W' = 1 + (W + 2 * pad - WW) / stride
 - cache: (x, w, b, conv_param)
 """

 out = None
 pad_num = conv_param['pad']
 stride = conv_param['stride']
 N,C,H,W = x.shape
 F,C,HH,WW = w.shape
 H_prime = (H+2*pad_num-HH) // stride + 1
 W_prime = (W+2*pad_num-WW) // stride + 1
 out = np.zeros([N,F,H_prime,W_prime])
 #im2col
 for im_num in range(N):
     im = x[im_num,:,:,:]
     im_pad = np.pad(im,((0,0),(pad_num,pad_num),(pad_num,pad_num)),'constant')
     im_col = im2col(im_pad,HH,WW,stride)
     filter_col = np.reshape(w,(F,-1))
     mul = im_col.dot(filter_col.T) + b
     out[im_num,:,:,:] = col2im(mul,H_prime,W_prime,1)
 cache = (x, w, b, conv_param)
 return out, cache

im2col函数:

def im2col(x,hh,ww,stride):
   """
   Args:
     x: image matrix to be translated into columns, (C,H,W)
     hh: filter height
     ww: filter width
     stride: stride
   Returns:
     col: (new_h*new_w,hh*ww*C) matrix, each column is a cube that will convolve with a filter
           new_h = (H-hh) // stride + 1, new_w = (W-ww) // stride + 1
   """

   c,h,w = x.shape
   new_h = (h-hh) // stride + 1
   new_w = (w-ww) // stride + 1
   col = np.zeros([new_h*new_w,c*hh*ww])
   for i in range(new_h):
      for j in range(new_w):
          patch = x[...,i*stride:i*stride+hh,j*stride:j*stride+ww]
          col[i*new_w+j,:] = np.reshape(patch,-1)
   return col

5.3反向传播图

使用im2col,计算图类似于具有相同格式的FC层

,不同之处在于有一堆重塑,转置和im2col块。

关于在反向传播期间的重塑和转置,只需要再次使用另一个重塑或转置来反转它们的操作,需要注意的是,如果在向前传播期间使用行优先进行重塑,反向传播中也要使用行优先。

im2col反向传播操作时。无法实现简单的重塑。这是因为感受野实际上是重合的(取决于步长),所以需要将感受野相交的地方的梯度相加。

反向传播代码:

def conv_backward_naive(dout, cache):
 """
 A naive implementation of the backward pass for a convolutional layer.
 Inputs:
 - dout: Upstream derivatives.
 - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive
 Returns a tuple of:
 - dx: Gradient with respect to x
 - dw: Gradient with respect to w
 - db: Gradient with respect to b
 """

 dx, dw, db = None, None, None
 x, w, b, conv_param = cache
 pad_num = conv_param['pad']
 stride = conv_param['stride']
 N,C,H,W = x.shape
 F,C,HH,WW = w.shape
 H_prime = (H+2*pad_num-HH) // stride + 1
 W_prime = (W+2*pad_num-WW) // stride + 1
 dw = np.zeros(w.shape)
 dx = np.zeros(x.shape)
 db = np.zeros(b.shape)
 # We could calculate the bias by just summing over the right dimensions
 # Bias gradient (Sum on dout dimensions (batch, rows, cols)
 #db = np.sum(dout, axis=(0, 2, 3))
 for i in range(N):
     im = x[i,:,:,:]
     im_pad = np.pad(im,((0,0),(pad_num,pad_num),(pad_num,pad_num)),'constant')
     im_col = im2col(im_pad,HH,WW,stride)
     filter_col = np.reshape(w,(F,-1)).T
     dout_i = dout[i,:,:,:]
     dbias_sum = np.reshape(dout_i,(F,-1))
     dbias_sum = dbias_sum.T
     #bias_sum = mul + b
     db += np.sum(dbias_sum,axis=0)
     dmul = dbias_sum
     #mul = im_col * filter_col
     dfilter_col = (im_col.T).dot(dmul)
     dim_col = dmul.dot(filter_col.T)
     dx_padded = col2im_back(dim_col,H_prime,W_prime,stride,HH,WW,C)
     dx[i,:,:,:] = dx_padded[:,pad_num:H+pad_num,pad_num:W+pad_num]
     dw += np.reshape(dfilter_col.T,(F,C,HH,WW))
 return dx, dw, db

col2im函数:

def col2im(mul,h_prime,w_prime,C):
   """
     Args:
     mul: (h_prime*w_prime*w,F) matrix, each col should be reshaped to C*h_prime*w_prime when C>0, or h_prime*w_prime when C = 0
     h_prime: reshaped filter height
     w_prime: reshaped filter width
     C: reshaped filter channel, if 0, reshape the filter to 2D, Otherwise reshape it to 3D
   Returns:
     if C == 0: (F,h_prime,w_prime) matrix
     Otherwise: (F,C,h_prime,w_prime) matrix
   """

   F = mul.shape[1]
   if(C == 1):
       out = np.zeros([F,h_prime,w_prime])
       for i in range(F):
           col = mul[:,i]
           out[i,:,:] = np.reshape(col,(h_prime,w_prime))
   else:
       out = np.zeros([F,C,h_prime,w_prime])
       for i in range(F):
           col = mul[:,i]
           out[i,:,:] = np.reshape(col,(C,h_prime,w_prime))
   return out

col2im_back函数:

def col2im_back(dim_col,h_prime,w_prime,stride,hh,ww,c):
   """
   Args:
     dim_col: gradients for im_col,(h_prime*w_prime,hh*ww*c)
     h_prime,w_prime: height and width for the feature map
     strid: stride
     hh,ww,c: size of the filters
   Returns:
     dx: Gradients for x, (C,H,W)
   """

   H = (h_prime - 1) * stride + hh
   W = (w_prime - 1) * stride + ww
   dx = np.zeros([c,H,W])
   for i in range(h_prime*w_prime):
       row = dim_col[i,:]
       h_start = (i / w_prime) * stride
       w_start = (i % w_prime) * stride
       dx[:,h_start:h_start+hh,w_start:w_start+ww] += np.reshape(row,(c,hh,ww))
   return dx

5.4小案例

这里使用X[3x3]与W [2x2]进行卷积的简单示例,来帮助大家的理解。

 

四、池化层

池化层用于减少特征空间的维度,但是不会改变特征图的深度,它的左右有如下的几点:

  1. 减少了特征空间信息,内存的使用更少,计算速度也将更

  2. 防止过拟合 

  3. 引入了位移不变性,更关注是否存在某些特征而不是特征具体的位置。比如最常见的max pooling,因为取一片区域的最大值,所以这个最大值在该区域内无论在哪,max-pooling之后都是它,相当于对微小位移的不变性。

使用的最多的是最大池化,如下图所示,最大池化像卷积核一样滑动窗,并在窗口上获得最大值作为输出。 

参数有:

  1.  输入:H1 x W1 x Depth_In x N. 

  2. 步长:控制窗口滑动的像素数量的标量。 

  3. K:内核大小 

  4. 输出:H2 x W2 x Depth_Out x N:

由于池化层上没有可学习的参数,所以它的反向传播更简单。

最大池在其计算图上使用一系列最大节点。因此,最大池化层的反向传播包含在前向传播期间选择的所有元素和dout的掩码之间的乘积。 
换句话说,最大池层的输入的梯度是由前向传播选择的元素的梯度和0组成的张量。

1、python实现池化层的前向传播

池化层上的窗口移动机制与卷积核相同,不同之处在于池化层的窗口是选择最大值。

2、python实现池化层的反向传播


https://blog.csdn.net/byplane/article/details/52422997 
https://mp.weixin.qq.com/s/oFWqM9HPhstk7H-GQY0O3g


推荐阅读

1

跟繁琐的命令行说拜拜!Gerapy分布式爬虫管理框架来袭!

2

爬虫代理哪家强?十大付费代理详细对比评测出炉!

3

只会用Selenium爬网页?Appium爬App了解一下

4

妈妈再也不用担心爬虫被封号了!手把手教你搭建Cookies池

5

App爬虫神器mitmproxy和mitmdump的使用


崔庆才

静觅博客博主,《Python3网络爬虫开发实战》作者

隐形字

个人公众号:进击的Coder

长按识别二维码关注

这里“阅读原文”,查看更多


今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/TbQgPlrhsZ
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/24218
 
517 次点击