Python社区  »  Python

Python基础面试,看这篇文章画重点吧,Python面试题No1

梦想橡皮擦 • 3 周前 • 61 次点击  
阅读 20

Python基础面试,看这篇文章画重点吧,Python面试题No1

为什么有这个系列的文章

一直想写一些更加基础的文章,但是总是想不到好的点子,最近到了就业季,一大堆学生面临就业了,正好,从Python的面试题出发,分析和解答一些常见的面试题,并且总结一些文字。

每一讲涉及5~10道面试题,整个系列的文章初步规划有20篇。

今天的面试题

第1题:1行代码实现1到100的和?

分析:这题考察的是对Python内置函数的了解程度

Python常见的内置函数有

python内置函数
官方查询手册如下 docs.python.org/3/library/f…

图片中我框选的是比较常用的一些,你可能见过,这题考察的是sum也就是求和 具体的使用

sum(iterable[, start])

  1. iterable -- 可迭代对象,如:列表、元组、集合。
  2. start -- 指定相加的参数,如果没有设置这个值,默认为0。

例如

sum([1,2,3]) # 结果为6
sum([1,2,3],5) # 结果为11
复制代码

python一行代码如何实现1~100的和

还要用到第二个内置函数 range()

range(start, stop[, step])

  1. start: 计数从 start 开始。默认是从 0 开始。例如range(5)等价于range(0, 5);
  2. stop: 计数到 stop 结束,但不包括 stop。例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5
  3. step:步长,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)

解答:

sum(range(1,101))
复制代码

第2题:如何使用Python输出一个[斐波那契数列]Fibonacci

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。

例子:1、1、2、3、5、8、13、21、34、……

解法1:

100以内的斐波那契数列

x=1
y=1
print(x,end=" ")
print(y,end=" ")
while(True):
    z=x+y
    x=y
    y=z
    if(z>100):   #当z>100的时候,终止循环
        break

    print(z,end=" ")

复制代码

解法2:

递归的办法,这个需要数学公式的记忆了

在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

#递归
def fibo(n):
	
    if n <= 1:
        return n
    else:
        return (fibo(n - 1) + fibo(n - 2))
 
m = int(input("打印前多少项?"))
if m <= 0:
    print("请输入正整数!")
else:
    print("fibo:")
    for i in range(1,m):
        print(fibo(i))

复制代码

解法3:

迭代,用递归当数据大的时候,会出现效率问题

def fibo(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1  # 退出标识
for n in fibo(5):
    print (n)
复制代码

经过试验,比迭代速度快很多 time.clock()说明

  • cpu 的运行机制:cpu是多任务的,例如在多进程的执行过程中,一段时间内会有对各进程被处理。一个进程从从开始到结束其实是在这期间的一些列时间片断上断断续续执行的。所以这就引出了程序执行的cpu时间(该程序单纯在cpu上运行所需时间)和墙上时钟wall time。
  • time.time()是统计的wall time(即墙上时钟),也就是系统时钟的时间戳(1970纪元后经过的浮点秒数)。所以两次调用的时间差即为系统经过的总时间。
  • time.clock()是统计cpu时间 的工具,这在统计某一程序或函数的执行速度最为合适。两次调用time.clock()函数的插值即为程序运行的cpu时间。
import time
def fibo(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
t1 = time.clock()
for n in fibo(100):
    print (n)
    
t2 = time.clock()

print(t2-t1)
复制代码

解法4: 使用列表查看一下速度

import time
def fibo(n):

    result_list = []
    a, b = 0, 1
    while n > 0:
        result_list.append(b)
        a, b = b, a + b
        n -= 1
    return result_list

t1 = time.clock()
print(fibo(1000))
t2 = time.clock()
print(t2-t1)
复制代码

当然,我看到一篇比较牛X的博客,博主后面2个办法,实在高级,贴给大家

blog.csdn.net/chichu261/a…

第3题:列出几个python标准库

你先明确的是什么是Python标准库

Python标准库(standard library)。 标准库会随着Python解释器,一起安装在你的电脑中的。它是Python的一个组成部分。 这些标准库是Python为你准备好的利器,可以让编程事半功倍。

文档手册可以查阅 > docs.python.org/zh-cn/3.7/l…

了解这个内容,这道题回答起来就非常简单了

  1. os模块
  2. re模块
  3. pickle 模块
  4. datetime模块
  5. time模块
  6. math模块

第4题:下面Python代码的运行结果是?

这种题目,考察的是代码默读能力




    

def f(x,l=[]):
    for i in range(x):
        l.append(i*i)
    print(l)
f(2)   
f(3,[3,2,1])
f(3)

复制代码
  • f(2)
def f(2,l=[]):
    for i in range(2): # i=0,1
        l.append(i*i) # [0,1]
    print(l)
复制代码
  • f(3,[3,2,1])
def f(3,l=[3,2,1]):
    for i in range(3): # i=0,1,2
        l.append(i*i) # [3,2,1,0,1,4]
    print(l)
复制代码
  • f(3)
def f(3,l=[]):
    for i in range(3): # i=0,1,2
        l.append(i*i) # [0,1,4] ???对吗?
    print(l)
复制代码

这个地方,你需要避免踩坑,一定要注意列表是可变的,如果单独的写没有任何问题,但是函数调用的三行代码放在一起就有点意思了

f(3,[3,2,1]) 将l进行了重新赋值。但是第三次调用函数使用的依旧是第一次的l,所以避免踩坑哦~~~~

f(3)运行的正确结果是[0,1,0,1,4]

在这里插入图片描述

第5题:python实现列表去重的方法?

简单直接的办法,集合里面的元素不可以重复

my_list = [1,1,2,2,3,3,5,6,7,88]
my_set = set(my_list)
my_list = [x for x in my_set]
my_list
复制代码

循环判断去重

ids = [1,1,2,2,3,3,5,6,7,88]
news_ids = []
for id in ids:
    if id not in news_ids:
        news_ids.append(id)
print(news_ids)

复制代码

字典的fromkeys方法实现

my_list=[1,1,2,2,3,3,5,6,7,88]
d = {}.fromkeys(my_list)
print(d.keys())
复制代码

今天的5道面试题答题完毕

nice girl 今天的5道面试题回答完毕~不知道你学到了多少,下篇博客见哦!

她专科学历 27岁从零开始学习c,c++,python编程语言 29岁编写百例教程 30岁掌握10种编程语言, 用自学的经历告诉你,学编程就找梦想橡皮擦

欢迎关注她的公众号,非本科程序员

扫码关注非本科程序员

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/32301
 
61 次点击  
分享到微博