Python中国社区  »  docker

树莓派 + Docker 轻松实现人脸识别应用

Docker • 11 月前 • 146 次点击  


人脸识别技术已经被广泛应用在众多场景中。今天我们将利用Docker容器在树莓派上快速打造一个人脸识别应用。

本文使用 https://github.com/ageitgey/facerecognition 开源框架,基于 dlib(Deep Metric Learning)支持人脸识别功能。dlib 在Labeled Faces in the Wild 测试基准上的准确率达到 99.38%。facerecognition的应用开发极为简单,只用几行 Python 命令行就可以轻松实现人脸识别应用,而且也提供了树莓派的支持。

在Raspberry Pi 2+ 平台安装face_recognition的指南如下:
https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
树莓派是Geek们最爱的开发板,其原因就在于成熟的软件生态和丰富的I/O接口,然而在树莓派上搞深度学习应用开发并非易事。

  1. 很多包需要下载编译,以孱弱的Raspberry Pi编译应用,需要极大的耐心。

  2. 然而开源的深度学习框架很多,不同类库的依赖不同,有些会互相冲突,比如有些需要Python 2.7,有些则依赖 3.x。虽然我们可以用virtualenv对Python环境进行隔离,但是对于一些系统级的依赖冲突就不好办了。在漫长构建中遇到依赖导致编译失败,让人非常有挫败感。

  3. 如果需要在另外一块板上部署相同应用,整个过程需要重新来过。


下面我们将利用Docker来构建打包应用镜像,这样可以一次构建到处运行,也可以充分利用Dockerfile自带的分层能力,可以方便地调整依赖包,这样在开发部署过程中格外高效。

树莓派上部署人脸识别应用


得益于树莓派和Docker安装部署人脸识别开发环境非常简单:

1、在 Raspberry PI 3 安装最新的 Raspbian。

2、执行如下命令安装最新的 Docker Engine 社区版。

# Install Docker
curl -sSL https://get.docker.com | sh
# Add pi to Docker group
sudo usermod pi -aG docker
# config cgroup for Docker
echo Adding " cgroup_enable=cpuset cgroup_enable=memory" to /boot/cmdline.txt
sudo cp /boot/cmdline.txt /boot/cmdline_backup.txt
# if you encounter problems, try changing cgroup_memory=1 to cgroup_enable=memory.
orig="$(head -n1 /boot/cmdline.txt) cgroup_enable=cpuset cgroup_memory=1"
echo $orig | sudo tee /boot/cmdline.txt
sudo reboot

3、安装 Raspberry Camera ,我用的是Camera Module2 注意蓝色胶带对着以太网接口方向。并通过 raspi-config 命令来开启 camera 模块。

4、在容器中开发、运行facerecognition应用,我们可以利用如下的命令来启动容器。其包含了facerecognition 的完整开发环境和示例应用。下文会介绍镜像的具体信息。

docker run -it \
   --name face_recognition \
   --device /dev/vchiq \
     registry.cn-hangzhou.aliyuncs.com/denverdino/face_recognition \
     bash

其中关键之处就在于将摄像头设备/dev/vchiq挂载到容器内部,这样就可以让容器中的应用来拍摄照片和视频。

大家可以利用 docker cp 命令,向容器中拷贝文件,比如照片,或者在容器中利用 nano 等命令来编辑代码。

人脸识别应用解析


基于 examples/facereconraspberry_pi.py 我修改了一个面部识别应用供参考,其实现如下:

# This is a demo of running face recognition on a Raspberry Pi.
# This program will print out the names of anyone it recognizes to the console.
# To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
# the picamera[array] module installed.
# You can follow this installation instructions to get your RPi set up:
# https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
import face_recognition
import picamera
import numpy as np
known_face_encodings = []
names = []
def load_face_encoding(name, file_name):
   image = face_recognition.load_image_file(file_name)
   face_encoding = face_recognition.face_encodings(image)[0]
   known_face_encodings.append(face_encoding)
   names.append(name)
# Get a reference to the Raspberry Pi camera.
# If this fails, make sure you have a camera connected to the RPi and that you
# enabled your camera in raspi-config and rebooted first.
camera = picamera.PiCamera()
camera.resolution = (320, 240)
output = np.empty((240, 320, 3), dtype=np.uint8)
# Load a sample picture and learn how to recognize it.
print("Loading known face image(s)")
load_face_encoding("Yi Li", "yili.jpg")
load_face_encoding("Zhang Kai", "zhangkai.jpg")
load_face_encoding("Che Yang", "cheyang.jpg")
# Initialize some variables
face_locations = []
face_encodings = []
while True:
   print("Capturing image.")
   # Grab a single frame of video from the RPi camera as a numpy array
   camera.capture(output, format="rgb")
   # Find all the faces and face encodings in the current frame of video
   face_locations = face_recognition.face_locations(output)
   print("Found {} faces in image.".format(len(face_locations)))
   face_encodings = face_recognition.face_encodings(output, face_locations)
   # Loop over each face found in the frame to see if it's someone we know.
   for face_encoding in face_encodings:
       # See if the face is a match for the known face(s)
       matches = face_recognition.face_distance(known_face_encodings, face_encoding)
       name = ""
       min_distance = min(matches)
       if min_distance < 0.6:
           i = matches.argmin()
           name = names[i]
       print("I see someone named {}!".format(name))

首先,代码中通过如下方法,加载指定人名的头像照片,您可以把自己、好基友的照片加入人脸库。

load_face_encoding("Yi Li", "yili.jpg")

然后,摄像头持续拍摄照片,如下方法会检测到照片中的面部信息。

face_locations = face_recognition.face_locations(output)
...
face_encodings = face_recognition.face_encodings(output, face_locations)

然后,对比面部信息和已知人脸信息的相似度,如果超过一个阈值,返回最为相近的同学名称,这样一个简单的人脸识别应用就完成了,是不是非常简单?

matches = face_recognition.face_distance(known_face_encodings, face_encoding)

运行的结果如下:

# python3 facerec_on_raspberry_pi.py 
Loading known face image(s)
Found 0 faces in image.
Capturing image.
Found 0 faces in image.
Capturing image.
Found 1 faces in image.
I see someone named Yi Li!
...

效果符合预期,但是受限于树莓派的处理能力,还远远达不到实时的效果,识别出人脸需要几秒的延迟。但是已经可以应用于一些简单的场景了,大家自己去开脑洞自己开发吧。

大家如果需要定制自己的人脸识别应用,可以从 https://github.com/denverdino/facerecognitionpi 获得相关的Dockerfile,来根据自己的需要构建一个完整的应用。

FROM resin/raspberry-pi-python:3
COPY pip.conf /root/.pip/pip.conf
RUN apt-get -y update
RUN apt-get install -y --fix-missing \
   build-essential \
   cmake \
   gfortran \
   git \
   wget \
   curl \
   graphicsmagick \
   libgraphicsmagick1-dev \
   libatlas-dev \
   libavcodec-dev \
   libavformat-dev \
   libboost-all-dev \
   libgtk2.0-dev \
   libjpeg-dev \
   liblapack-dev \
   libswscale-dev \
   pkg-config \
   python3-dev \
   zip \
   && apt-get clean && rm -rf /tmp/* /var/tmp/*
RUN python3 -m ensurepip --upgrade && pip3 install --upgrade picamera[array] dlib
# The rest of this file just runs an example script.
# If you wanted to use this Dockerfile to run your own app instead, maybe you would do this:
# COPY . /root/your_app_or_whatever
# RUN cd /root/your_app_or_whatever && \
#     pip3 install -r requirements.txt
# RUN whatever_command_you_run_to_start_your_app
RUN git clone --single-branch https://github.com/ageitgey/face_recognition.git
RUN cd /face_recognition && \
   pip3 install -r requirements.txt && \
   python3 setup.py install
CMD cd /face_recognition/examples && \
   python3 recognize_faces_in_pictures.py

大家如果希望将自己应用打包到Docker镜像中,可以添加修改Dockerfile,我就不多说了。

最后来晒一下我的树莓派3配置,除了Camera之外还加装了一个液晶显示屏,通过GPIO驱动,可以方便地通过编程来显示CPU/Memory/温度等各种信息。


总结


容器技术已经越来越多运用于IoT、边缘计算等场景,利用容器可以极大地简化智能设备的应用生命周期管理。今天我们演示了一个运行在树莓派上的人脸识别应用。本文实例代码可以从 https://github.com/denverdino/facerecognitionpi 获取。

2017我们见证了容器技术的快速发展,Kubernetes,Containerd/OCI等容器技术标准得到了生态的共识,这也将催生更多的应用创新。2018我们不但可以看见容器在企业用户的生产环境中被广泛应用,容器技术也将无处不在,给我们更多的惊喜。

原文链接:https://yq.aliyun.com/articles/346459


基于Kubernetes的DevOps实践培训


本次培训包含:Kubernetes核心概念;Kubernetes集群的安装配置、运维管理、架构规划;Kubernetes组件、监控、网络;针对于Kubernetes API接口的二次开发;DevOps基本理念;微服务架构;微服务的容器化等,点击识别下方二维码加微信好友了解具体培训内容



点击阅读原文链接即可报名。

今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/vDuCOFPQIL
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/5274
 
146 次点击  
分享到微博