Python社区  »  机器学习算法

如何进行贝叶深度学习?纽约大学Andrew博士视频讲解《 贝叶斯深度学习与概率模型构建》134页ppt

专知 • 4 天前 • 14 次点击  

Andrew Gordon Wilson,纽约大学Courant数学科学研究所和数据科学中心助理教授,曾担任AAAI 2018、AISTATS 2018、UAI 2018、NeurIPS 2018、AISTATS 2019、ICML 2019、UAI 2019、NeurIPS 2019、AAAI 2020、ICLR 2020的区域主席/SPC以及ICML 2019、2020年EXO主席。

个人主页:https://cims.nyu.edu/~andrewgw/



贝叶斯深度学习与概率模型构建

贝叶斯方法的关键区别属性是间隔化,而不是使用单一的权重设置。贝叶斯间隔化尤其可以提高现代深度神经网络的准确性和标度,这些数据通常不充分指定,并可以代表许多引人注目但不同的解决方案。研究表明,深层的综合系统提供了一种有效的近似贝叶斯间隔化机制,并提出了一种相关的方法,在没有显著开销的情况下,通过在吸引 basins 内间隔化来进一步改进预测分布。我们还研究了神经网络权值的模糊分布所隐含的先验函数,从概率的角度解释了这些模型的泛化特性。从这个角度出发,我们解释了一些神秘而又不同于神经网络泛化的结果,比如用随机标签拟合图像的能力,并表明这些结果可以用高斯过程重新得到。我们还表明贝叶斯平均模型减轻了双下降,从而提高了灵活性,提高了单调性能。最后,我们提供了一个贝叶斯角度的调温校正预测分布。


视频地址:https://www.youtube.com/watch?v=E1qhGw8QxqY


视频:




专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“BAYESDL2020” 可以获取《(ICML 2020 Tutorial)贝叶斯深度学习与概率模型构建,134页ppt》专知下载链接索引

专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/71998
 
14 次点击  
分享到微博