医学影像AI的落地道阻且长。在深度学习自动化、通用表征学习、学习与知识融合等方向上,2020年底当选NAI Fellow的周少华教授分享了最新的学术研究成果。直到今天,医学影像AI的研究和落地,还有多少问题没有解决? 任务的复杂多样、数据的非标孤立、标注的稀疏有噪、模型的脆弱不稳,这些成为医学影像AI学者难以回避的问题。而在现实环境中,AI模型面临的考验更为复杂、不确定性更大。2020年可以称之为“医疗AI商业化的元年”,已经有多款医疗AI产品获得官方审批。在人们惊叹“中国AI速度”的时候、在医学影像AI的大规模商业化之前,我们仍然要冷静思考眼下的问题。2021年1月9日,中关村医学人工智能研讨会举行。本次研讨会由《中国图象图形学报》联合中国生物医学工程学会医学人工智能分会共同主办,中国科学院自动化所田捷教授、华西医院副院长龚启勇教授、中国科学院计算所周少华教授、中国科学院计算所赵地副研究员等分享了在医学影像的最新研究与应用进展。周少华教授是中科院计算所研究员、香港中文大学(深圳)兼职教授。曾获发明奥斯卡奖、西门子年度发明家、马里兰大学ECE杰出校友等,任MICCAI协会财长和理事,曾担任MICCAI 2020程序联席主席,AAAI、CVPR、ICCV、MICCAI和NeurIPS等会议的领域主席。2020年底,周少华教授入选美国国家发明家科学院(National Academy of Inventors, NAI) Fellow。NAI是一个非政府、非营利性会员组织,成立于2000年。NAI Fellow是该院授予学术创新发明家的最高荣誉,旨在表彰对人类生活质量、经济发展和社会福祉影响重大的学术创新发明家。迄今有1403名Fellows(包括本年度新科Fellows),其中有38名诺贝尔奖获得者、63名美国国家技术发明奖章(U.S. National Medal of Technology and Innovation)和美国国家科学奖章(U.S. National Medal of Science)获得者、556名美国国家科学院(NAS)、美国国家工程院(NAE)和美国国家医学院(NAM)院士、137名美国研究型大学校长或研究机构负责人等。这些来自世界各地的院士共持有42700余项美国专利,创造了3600万个就业岗位和超过22000亿美元的收益。演讲中,周少华教授列举了医学影像AI现阶段面临的七大问题。并且,围绕深度学习自动化、通用表征学习、学习与知识融合等技术,分享了自己最新的研究思路与应用进展。征得周少华教授同意后,我们提供PPT供大家学习和下载。关注公众号《医健AI掘金志》,对话框回复“周少华”即可获取。
最后,再介绍一下学习与知识融合。我们知道,医学影像有很多数据,可以通过机器学习(特别是深度学习)来建模。同时,医学影像有很多知识,我们也可以直接通过对知识进行建模。因此,将学习与知识进行融合,其效果比仅仅基于大数据的机器学习要好。在实践中,我也经常观察到其提升了性能。下面举例说明。这是一个胸片自动诊断的例子。一般方法是训练一个‘黑盒’神经网络直接预测诊断结果。我们研究了一个方法,利用解剖结构分解的知识来提高性能,这也是我们跟临床医生交流之后了解到的。看胸片进行诊断时,你会观察到肋骨可能会遮挡了肺部,妨碍诊断。因此,我们设计了一个分解网络把X光片一分为三:骨头投影、肺部投影、其他投影,然后和原图一起输入神经网络进行肺部疾病的自动诊断。这么做,可以从中间的肺部投影图中获取到很多更准确的诊断信息。实验结果表明,在14类疾病中,有11类疾病诊断预测都做得更好,而这11类疾病大多是和肺部直接相关的。第二个例子是无配对的伪影去除:给神经网络一个有伪影的图,通过学习的方法把伪影消除。这是我们网络的设计,里面就像是乐高一样进行模块搭建,搭建过程中就用到了很多知识。最终,网络也可以成功地分离出伪影,利用知识后搭建的神经网络,比一般黑盒的方法要提高不少性能。另外一个例子,医学影像的层内精度比较高,但是层间精度不太高,很多层间信息会模糊。如果是一个常规CT、层间精度不够高的脊柱图像,进行渲染之后,哪怕是骨骼都看不太清楚。我们最近尝试进行了层间插值的工作,可以有效恢复层间的信息,更有利于诊断(效果如上图)。算法本身用到了图像精度方面的具体知识,因此我们也将其视为“学习与知识融合”的例子来展示。具体算法细节请参照发表的文章。总结一下,我们分析了医学影像的七大特点,以及围绕这七大特点,我们提出的相应算法趋势。最近,我们也写了一篇综述文章,也被Proceedings of IEEE接收。最后,介绍一下MONAI。MONAI是完全开源的社区,可以为医学影像分析的研究者提供深度神经网络方面的资源,由专门的团队来打造、测试这个软件,因此软件的可靠性非常高。我也是MONAI项目的顾问,我们会提出很多的这些需求,也希望大家可以来使用MONAI。