社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

太香啦,一行 Python 代码自动训练 N 个模型!

大数据与机器学习文摘 • 3 年前 • 602 次点击  

自动化机器学习(Auto-ML)是指数据科学模型开发的管道组件自动化。AutoML 减少了数据科学家的工作量并加快了工作流程。AutoML 可用于自动化各种管道组件,包括数据理解,EDA,数据处理,模型训练,超参数调整等。

对于端到端机器学习项目,每个组件的复杂性取决于项目。我们知道市面上有很多的 AutoML 开源库可加快开发的速度。在本文中,我将分享一个非常棒的python工具库「LazyPredict」

什么是LazyPredict?

LazyPredict是一个开源Python库,可自动执行模型训练管道并加快工作流程。LazyPredict可以为分类数据集训练约30个分类模型,为回归数据集训练约40个回归模型。

LazyPredict将返回经过训练的模型以及其性能指标,而无需编写太多代码。可以轻松比较每个模型的性能指标,并调整最佳模型以进一步提高性能。

安装

可以使用以下方法从PyPl库中安装LazyPredict:

pip install lazypredict

安装后,可以导入库以执行分类和回归模型的自动训练。

from lazypredict.Supervised import LazyRegressor, LazyClassifier

用法

LazyPredict 同时支持分类和回归问题,因此我将利用案例说明:波士顿住房(回归)和泰坦尼克号(分类)数据集用于LazyPredict库的演示。

分类任务

LazyPredict 的用法非常直观,类似于scikit-learn。首先为分类任务创建一个估计器 LazyClassifier 的实例,可以通过自定义指标进行评估,默认情况下,每个模型都将根据准确性,ROC、AUC得分, F1-score进行评估。

在进行 lazypredict 模型训练之前,必须先读取数据集并进行处理,以使其适合训练。在进行特征工程并将数据拆分为训练测试数据之后,我们可以使用 LazyPredict 进行模型训练。

# LazyClassifier Instance and fiting data
cls= LazyClassifier(ignore_warnings=False, custom_metric=None)
models, predictions = cls.fit(X_train, X_test, y_train, y_test)

回归任务

与分类模型训练相似,LazyPredict附带了针对回归数据集的自动模型训练。该实现类似于分类任务,只是实例LazyRegressor有所更改。

reg = LazyRegressor(ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)

观察以上性能指标,AdaBoost分类器是分类任务的最佳表现模型,而GradientBoostingRegressor模型是回归任务的最佳表现模型。

完整版案例

分类

from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

data = load_breast_cancer()
X = data.data
y= data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)

clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_test, y_train, y_test)

print(models)


| Model                          |   Accuracy |   Balanced Accuracy |   ROC AUC |   F1 Score |   Time Taken |
|:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|
| LinearSVC                      |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0150008 |
| SGDClassifier                  |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0109992 |
| MLPClassifier                  |   0.985965 |            0.986904 |  0.986904 |   0.985994 |    0.426     |
| Perceptron                     |   0.985965 |            0.984797 |  0.984797 |   0.985965 |    0.0120046 |
| LogisticRegression             |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.0200036 |
| LogisticRegressionCV           |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.262997  |
| SVC                            |   0.982456 |            0.979942 |  0.979942 |   0.982437 |    0.0140011 |
| CalibratedClassifierCV         |   0.982456 |            0.975728 |  0.975728 |   0.982357 |    0.0350015 |
| PassiveAggressiveClassifier    |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0130005 |
| LabelPropagation               |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0429988 |
| LabelSpreading                 |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0310006 |
| RandomForestClassifier         |   0.97193  |            0.969594 |  0.969594 |   0.97193  |    0.033     |
| GradientBoostingClassifier     |   0.97193  |            0.967486 |  0.967486 |   0.971869 |    0.166998  |
| QuadraticDiscriminantAnalysis  |   0.964912 |            0.966206 |  0.966206 |   0.965052 |    0.0119994 |
| HistGradientBoostingClassifier |   0.968421 |            0.964739 |  0.964739 |   0.968387 |    0.682003  |
| RidgeClassifierCV              |   0.97193  |            0.963272 |  0.963272 |   0.971736 |    0.0130029 |
| RidgeClassifier                |   0.968421 |            0.960525 |  0.960525 |   0.968242 |    0.0119977 |
| AdaBoostClassifier             |   0.961404 |            0.959245 |  0.959245 |   0.961444 |    0.204998  |
| ExtraTreesClassifier           |   0.961404 |            0.957138 |  0.957138 |   0.961362 |    0.0270066 |
| KNeighborsClassifier           |   0.961404 |            0.95503  |  0.95503  |   0.961276 |    0.0560005 |
| BaggingClassifier              |   0.947368 |            0.954577 |  0.954577 |   0.947882 |    0.0559971 |
| BernoulliNB                    |   0.950877  |            0.951003 |  0.951003 |   0.951072 |    0.0169988 |
| LinearDiscriminantAnalysis     |   0.961404 |            0.950816 |  0.950816 |   0.961089 |    0.0199995 |
| GaussianNB                     |   0.954386 |            0.949536 |  0.949536 |   0.954337 |    0.0139935 |
| NuSVC                          |   0.954386 |            0.943215 |  0.943215 |   0.954014 |    0.019989  |
| DecisionTreeClassifier         |   0.936842 |            0.933693 |  0.933693 |   0.936971 |    0.0170023 |
| NearestCentroid                |   0.947368 |            0.933506 |  0.933506 |   0.946801 |    0.0160074 |
| ExtraTreeClassifier            |   0.922807 |            0.912168 |  0.912168 |   0.922462 |    0.0109999 |
| CheckingClassifier             |   0.361404 |            0.5      |  0.5      |   0.191879 |    0.0170043 |
| DummyClassifier                |   0.512281 |            0.489598 |  0.489598 |   0.518924 |    0.0119965 |

回归

from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np

boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)

offset = int(X.shape[0] * 0.9)

X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

reg = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
models, predictions = reg.fit(X_train, X_test, y_train, y_test)

print(models)


| Model                         | Adjusted R-Squared | R-Squared |  RMSE | Time Taken |
|:------------------------------|-------------------:|----------:|------:|-----------:|
| SVR                           |               0.83 |      0.88 |  2.62 |       0.01 |
| BaggingRegressor              |               0.83 |      0.88 |  2.63 |       0.03 |
| NuSVR                         |               0.82 |      0.86 |  2.76 |       0.03 |
| RandomForestRegressor         |               0.81 |      0.86 |  2.78 |       0.21 |
| XGBRegressor                  |               0.81 |      0.86 |  2.79 |       0.06 |
| GradientBoostingRegressor     |               0.81 |      0.86 |  2.84 |       0.11 |
| ExtraTreesRegressor           |               0.79 |      0.84 |  2.98 |       0.12 |
| AdaBoostRegressor             |               0.78 |      0.83 |  3.04 |       0.07 |
| HistGradientBoostingRegressor |               0.77 |      0.83 |  3.06 |       0.17 |
| PoissonRegressor              |               0.77 |      0.83 |  3.11 |       0.01 |
| LGBMRegressor                 |               0.77 |      0.83 |  3.11 |       0.07 |
| KNeighborsRegressor           |               0.77 |      0.83 |  3.12 |       0.01 |
| DecisionTreeRegressor         |               0.65 |      0.74 |  3.79 |       0.01 |
| MLPRegressor                  |               0.65 |      0.74  |  3.80 |       1.63 |
| HuberRegressor                |               0.64 |      0.74 |  3.84 |       0.01 |
| GammaRegressor                |               0.64 |      0.73 |  3.88 |       0.01 |
| LinearSVR                     |               0.62 |      0.72 |  3.96 |       0.01 |
| RidgeCV                       |               0.62 |      0.72 |  3.97 |       0.01 |
| BayesianRidge                 |               0.62 |      0.72 |  3.97 |       0.01 |
| Ridge                         |               0.62 |      0.72 |  3.97 |       0.01 |
| TransformedTargetRegressor    |               0.62 |      0.72 |  3.97 |       0.01 |
| LinearRegression              |               0.62 |      0.72 |  3.97 |       0.01 |
| ElasticNetCV                  |               0.62 |      0.72 |  3.98 |       0.04 |
| LassoCV                       |               0.62 |      0.72 |  3.98 |       0.06 |
| LassoLarsIC                   |               0.62 |      0.72 |  3.98 |       0.01 |
| LassoLarsCV                   |               0.62 |      0.72 |  3.98 |       0.02 |
| Lars                          |               0.61 |      0.72 |  3.99 |       0.01 |
| LarsCV                        |               0.61 |      0.71 |  4.02 |       0.04 |
| SGDRegressor                  |               0.60 |      0.70 |  4.07 |       0.01 |
| TweedieRegressor              |               0.59 |      0.70 |  4.12 |       0.01 |
| GeneralizedLinearRegressor    |               0.59 |      0.70 |  4.12 |       0.01 |
| ElasticNet                    |               0.58 |      0.69 |  4.16 |       0.01 |
| Lasso                         |               0.54 |      0.66 |  4.35 |       0.02 |
| RANSACRegressor               |               0.53 |      0.65 |  4.41 |       0.04 |
| OrthogonalMatchingPursuitCV   |               0.45 |      0.59 |  4.78 |       0.02 |
| PassiveAggressiveRegressor    |               0.37 |      0.54 |  5.09 |       0.01 |
| GaussianProcessRegressor      |               0.23 |      0.43 |  5.65 |       0.03 |
| OrthogonalMatchingPursuit     |               0.16 |      0.38 |  5.89 |       0.01 |
| ExtraTreeRegressor            |               0.08 |      0.32 |  6.17 |       0.01 |
| DummyRegressor                |              -0.38 |     -0.02 |  7.56 |       0.01 |
| LassoLars                     |              -0.38 |     -0.02 |  7.56 |       0.01 |
| KernelRidge                   |             -11.50 |     -8.25 | 22.74 |       0.01 |

结论

在本文中,我们讨论了LazyPredict库的实现,该库可以在几行Python代码中训练大约70个分类和回归模型。这是一个非常方便的工具,因为它提供了模型执行的总体情况,并且可以比较每个模型的性能。

每个模型都使用其默认参数进行训练,因为它不执行超参数调整。选择性能最佳的模型后,开发人员可以调整模型以进一步提高性能。

- EOF -

推荐阅读  点击标题可跳转

1、网易云音乐数仓模型设计实践

2、AutoML大提速,谷歌开源自动化寻找最优ML模型新平台Model Search

3、PyTorch + NumPy这么做会降低模型准确率,这是bug还是预期功能?


看完本文有收获?请转发分享给更多人

关注「大数据与机器学习文摘」,成为Top 1%

点赞和在看就是最大的支持❤️

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/116108
 
602 次点击