
如今,数据科学与人工智能正越来越普遍——尤其是随着 Netflix、亚马逊、Facebook、Spotify 等大公司不断部署人工智能战略,想在幕后与消费者展开更紧密的互动。
但是,有很多企业并没有用好数据科学,而把数据科学当成了一个好看而无用的花瓶。到底应该如何“正确地应用”数据科学和人工智能呢?如何真正地从业务需求出发,把数据科学用在刀刃上呢?今天这篇文章,我们就来看看Netflix是如何从产品需求出发,让数据科学和机器学习成为真正的增长引擎,而不是摆设的花瓶。


Netflix数据科学/人工智能的五大实例
电影推荐个性化——观看A电影的用户可能会观看 B电影。这可能是 Netflix 最著名的功能, Netflix根据品味相似的用户观看历史记录来推荐你接下来可能最有兴趣观看的内容,从而提升客户满意度,维持订阅量。
缩略图的自动生成和个性化——Netflix使用来自现有电影或节目的数千个视频帧作为缩略图生成的起点,再对这些图像进行注释,然后对每张图像进行排名,从而判断哪些缩略图最有可能被客户点击。这些计算基于与你相似的用户点击的内容,发现可能喜欢某些演员/电影的用户更有可能点击具有某些演员/图像属性的缩略图。
电影制作的选址(前期制作)——Netflix使用数据来辅助决定最佳拍摄地点和时间。考虑到日程安排(包括演员/工作人员的可用性等)、预算(场地、航班/酒店成本)和制作的限制场景要求(比如是白天还是夜间拍摄,极端天气状况的发生概率等)。这个应用场景属于数据科学中的优化问题,而不是基于过去数据进行预测的机器学习模型。
电影编辑(后期制作)——Netflix使用过去的有质量问题的视频数据(指字幕与声音/动作不同步的情况)——预测人工检查在什么时候最有益,因为人工检查往往是一个非常耗时和费力的过程。
流媒体质量——使用过去的观看数据来预测带宽使用情况,以帮助 Netflix 决定何时缓存区域服务器,从而能在在峰值(预期)需求期间加快加载时间。
