Py学习  »  Python

【每日算法】用树建图,求距离目标节点为 k 的点集的两种方式:「建图 + BFS」&「建图 + 迭代加深」 |Python 主题月

宫水三叶的刷题日记 • 3 年前 • 394 次点击  
阅读 836

【每日算法】用树建图,求距离目标节点为 k 的点集的两种方式:「建图 + BFS」&「建图 + 迭代加深」 |Python 主题月

本文正在参加「Python主题月」,详情查看 活动链接

题目描述

这是 LeetCode 上的 863. 二叉树中所有距离为 K 的结点 ,难度为 中等

Tag : 「图论 BFS」、「图论 DFS」、「二叉树」

给定一个二叉树(具有根结点 root), 一个目标结点 target ,和一个整数值 K 。

返回到目标结点 target 距离为 K 的所有结点的值的列表。 答案可以以任何顺序返回。

示例 1:

输入:root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, K = 2

输出:[7,4,1]

解释:
所求结点为与目标结点(值为 5)距离为 2 的结点,
值分别为 7,4,以及 1
复制代码

注意,输入的 "root" 和 "target" 实际上是树上的结点。 上面的输入仅仅是对这些对象进行了序列化描述。

提示:

  • 给定的树是非空的。
  • 树上的每个结点都具有唯一的值 0 <= node.val <= 500 。
  • 目标结点 target 是树上的结点。
  • 0 <= K <= 1000.

基本分析

显然,如果题目是以图的形式给出的话,我们可以很容易通过「BFS / 迭代加深」找到距离为 kk 的节点集。

而树是一类特殊的图,我们可以通过将二叉树转换为图的形式,再进行「BFS / 迭代加深」。

由于二叉树每个点最多有 22 个子节点,点和边的数量接近,属于稀疏图,因此我们可以使用「邻接表」的形式进行存储。

建图方式为:对于二叉树中相互连通的节点(rootroot.leftrootroot.right),建立一条无向边。

建图需要遍历整棵树,使用 DFS 或者 BFS 均可。

由于所有边的权重均为 11 ,我们可以使用 「BFS / 迭代加深」 找到从目标节点 target 出发,与目标节点距离为 kk 的节点,然后将其添加到答案中。

一些细节:利用每个节点具有唯一的值,我们可以直接使用节点值进行建图和搜索。

建图 + BFS

由「基本分析」,可写出「建图 + BFS」的实现。

image.png

Java 代码:

class Solution {
    int N = 1010, M = N * 2;
    int[] he = new int[N], e = new int[M], ne = new int[M];
    int idx;
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    boolean[] vis = new boolean[N];
    public List<Integer> distanceK(TreeNode root, TreeNode t, int k) {
        List<Integer> ans = new ArrayList<>();
        Arrays.fill(he, -1);
        dfs(root);
        Deque<Integer> d = new ArrayDeque<>();
        d.addLast(t.val);
        vis[t.val] = true;
        while (!d.isEmpty() && k >= 0) {
            int size = d.size();
            while (size-- > 0) {
                int poll = d.pollFirst();
                if (k == 0) {
                    ans.add(poll);
                    continue;
                }
                for (int i = he[poll]; i != -1 ; i = ne[i]) {
                    int j = e[i];
                    if (!vis[j]) {
                        d.addLast(j);
                        vis[j] = true;
                    }
                }
            }
            k--;
        }
        return ans;
    }
    void dfs(TreeNode root) {
        if (root == null) return;
        if (root.left != null) {
            add(root.val, root.left.val);
            add(root.left.val, root.val);
            dfs(root.left);
        }
        if (root.right != null) {
            add(root.val, root.right.val);
            add(root.right.val, root.val);
            dfs(root.right);
        }
    }
}
复制代码
  • 时间复杂度:通过 DFS 进行建图的复杂度为 O(n)O(n);通过 BFS 找到距离 targettargetkk 的节点,复杂度为 O(n)O(n)。整体复杂度为 O(n)O(n)
  • 空间复杂度:O(n)O(n)

建图 + 迭代加深

由「基本分析」,可写出「建图 + 迭代加深」的实现。

迭代加深的形式,我们只需要结合题意,搜索深度为 kk 的这一层即可。

image.png

Java 代码:

class Solution {
    int N = 1010, M = N * 2;
    int[] he = new int[N], e = new int[M], ne = new int[M];
    int idx;
    void add


    
(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    boolean[] vis = new boolean[N];
    public List<Integer> distanceK(TreeNode root, TreeNode t, int k) {
        List<Integer> ans = new ArrayList<>();
        Arrays.fill(he, -1);
        dfs(root);
        vis[t.val] = true;
        find(t.val, k, 0, ans);
        return ans;
    }
    void find(int root, int max, int cur, List<Integer> ans) {
        if (cur == max) {
            ans.add(root);
            return ;
        }
        for (int i = he[root]; i != -1; i = ne[i]) {
            int j = e[i];
            if (!vis[j]) {
                vis[j] = true;
                find(j, max, cur + 1, ans);
            }
        }
    }
    void dfs(TreeNode root) {
        if (root == null) return;
        if (root.left != null) {
            add(root.val, root.left.val);
            add(root.left.val, root.val);
            dfs(root.left);
        }
        if (root.right != null) {
            add(root.val, root.right.val);
            add(root.right.val, root.val);
            dfs(root.right);
        }
    }
}
复制代码
  • 时间复杂度:通过 DFS 进行建图的复杂度为 O(n)O(n);通过迭代加深找到距离 targettargetkk 的节点,复杂度为 O(n)O(n)。整体复杂度为 O(n)O(n)
  • 空间复杂度:O(n)O(n)

最后

这是我们「刷穿 LeetCode」系列文章的第 No.863 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/117715
 
394 次点击