社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

NNI — 微软开源的一个自动帮你做机器学习调参的神器

大数据与机器学习文摘 • 3 年前 • 539 次点击  


NNI 自动机器学习调参,是微软开源的又一个神器,它能帮助你找到最好的神经网络架构或超参数,支持各种训练环境

它常用的使用场景如下:

  • 想要在自己的代码、模型中试验不同的机器学习算法

  • 想要在不同的环境中加速运行机器学习。

  • 想要更容易实现或试验新的机器学习算法的研究员或数据科学家,包括:超参调优算法,神经网络搜索算法以及模型压缩算法。

它支持的框架有:

  • PyTorch

  • Keras

  • TensorFlow

  • MXNet

  • Caffe2

  • Scikit-learn

  • XGBoost

  • LightGBM

基本上市面上所有的深度学习和机器学习的框架它都支持。

下面就来看看怎么使用这个工具。

1.准备



开始之前,你要确保Python和pip已经成功安装在电脑上。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点。

请选择以下任一种方式输入命令安装依赖
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.




    
pip install nni


2.运行示例



让我们运行一个示例来验证是否安装成功,首先克隆项目:

git clone -b v2.6 https://github.com/Microsoft/nni.git


运行 MNIST-PYTORCH 示例,Linux/macOS

nnictl create --config nni/examples/trials/mnist-pytorch/config.yml


Windows


nnictl create --config nni\examples\trials\mnist-pytorch\config_windows.yml


出现这样的界面就说明安装成功,示例运行正常:



访问 http://127.0.0.1:8080 可以配置运行时间、实验次数等:



3.模型自动调参配置



那么如何让 NNI 和我们自己的模型适配呢?

观察 config_windows.yaml 会发现:

searchSpaceFile: search_space.json
trialCommand: python mnist.py
trialGpuNumber: 0
trialConcurrency: 1
tuner:
  name: TPE
  classArgs:
    optimize_mode: maximize
trainingService:
  platform: local


我们先看看 trialCommand, 这很明显是训练使用的命令,训练代码位于 mnist.py,其中有部分代码如下:

def get_params():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument("--data_dir", type=str,
                        default='./data', help="data directory")
    parser.add_argument('--batch_size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument("--batch_num", type=int, default=None)
    parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
                        help='hidden layer size (default: 512)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--no_cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
                        help='how many batches to wait before logging training status')
    args, _ = parser.parse_known_args()
    return args


如上所示,这个模型里提供了 10 个参数选择。也就是说 NNI 可以帮我们自动测试这10个参数。

那么这些参数在哪里设定?答案是在 searchSpaceFile 中,对应的值也就是 search_space.json:

{
    "batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},
    "hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},
    "lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
    "momentum" :{"_type":"uniform","_value":[0, 1]}
}


这里有4个选项,NNI 是怎么组合这些参数的呢?这是 tuner 参数干的事,为了让机器学习和深度学习模型适应不同的任务和问题,我们需要进行超参数调优,而自动化调优依赖于优秀的调优算法。NNI 内置了先进的调优算法,并且提供了易于使用的 API。

在 NNI 中,Tuner 向 trial 发送超参数,接收运行结果从而评估这组超参的性能,然后将下一组超参发送给新的 trial。

下表简要介绍了 NNI 内置的调优算法。

Tuner算法简介
TPETree-structured Parzen Estimator (TPE) 是一种基于序列模型的优化方法。SMBO方法根据历史数据来顺序地构造模型,从而预估超参性能,并基于此模型来选择新的超参。
Random Search (随机搜索)随机搜索在超算优化中表现出了令人意外的性能。如果没有对超参分布的先验知识,我们推荐使用随机搜索作为基线方法。
Anneal (退火)朴素退火算法首先基于先验进行采样,然后逐渐逼近实际性能较好的采样点。该算法是随即搜索的变体,利用了反应曲面的平滑性。该实现中退火率不是自适应的。
Naive Evolution(朴素进化)朴素进化算法来自于 Large-Scale Evolution of Image Classifiers。它基于搜索空间随机生成一个种群,在每一代中选择较好的结果,并对其下一代进行变异。朴素进化算法需要很多 Trial 才能取得最优效果,但它也非常简单,易于扩展。
SMACSMAC 是基于序列模型的优化方法 (SMBO)。它利用使用过的最突出的模型(高斯随机过程模型),并将随机森林引入到SMBO中,来处理分类参数。NNI 的 SMAC tuner 封装了 GitHub 上的 SMAC3。参考论文注意:SMAC 算法需要使用 pip install nni[SMAC] 安装依赖,暂不支持 Windows 操作系统。
Batch(批处理)批处理允许用户直接提供若干组配置,为每种配置运行一个 trial。
Grid Search(网格遍历)网格遍历会穷举搜索空间中的所有超参组合。
HyperbandHyperband 试图用有限的资源探索尽可能多的超参组合。该算法的思路是,首先生成大量超参配置,将每组超参运行较短的一段时间,随后抛弃其中效果较差的一半,让较好的超参继续运行,如此重复多轮。参考论文
Metis大多数调参工具仅仅预测最优配置,而 Metis 的优势在于它有两个输出:(a) 最优配置的当前预测结果, 以及 (b) 下一次 trial 的建议。大多数工具假设训练集没有噪声数据,但 Metis 会知道是否需要对某个超参重新采样。参考论文
BOHBBOHB 是 Hyperband 算法的后续工作。Hyperband 在生成新的配置时,没有利用已有的 trial 结果,而本算法利用了 trial 结果。BOHB 中,HB 表示 Hyperband,BO 表示贝叶斯优化(Byesian Optimization)。BOHB 会建立多个 TPE 模型,从而利用已完成的 Trial 生成新的配置。参考论文
GP (高斯过程)GP Tuner 是基于序列模型的优化方法 (SMBO),使用高斯过程进行 surrogate。参考论文
PBTPBT Tuner 是一种简单的异步优化算法,在固定的计算资源下,它能有效的联合优化一组模型及其超参来最优化性能。参考论文
DNGODNGO 是基于序列模型的优化方法 (SMBO),该算法使用神经网络(而不是高斯过程)去建模贝叶斯优化中所需要的函数分布。

可以看到本示例中,选择的是TPE tuner.

其他的参数比如 trialGpuNumber,指的是使用的gpu数量,trialConcurrency 指的是并发数。trainingService 中 platform 为 local,指的是本地训练。

当然,还有许多参数可以选,比如:

trialConcurrency: 2                 # 同时运行 2 个 trial
maxTrialNumber: 10                  # 最多生成 10 个 trial
maxExperimentDuration: 1h # 1 小时后停止生成 trial


不过这些参数在调优开始时的web页面上是可以进行调整的。


所以其实NNI干的事情就很清楚了,也很简单。你只需要在你的模型训练文件中增加你想要调优的参数作为输入,就能使用NNI内置的调优算法对不同的参数进行调优,而且允许从页面UI上观察调优的整个过程,相对而言还是很方便的。

不过,NNI可能不太适用一些数据量极大或模型比较复杂的情况。比如基于DDP开发的模型,在NNI中可能无法实现大型的分布式计算。

当然,绝大多数情况下的训练任务,NNI都可以用得上。大家有兴趣深入使用的可以阅读NNI官方文档:

https://nni.readthedocs.io/


- EOF -

推荐阅读  点击标题可跳转

1、2021 十大机器学习库

2、机器学习和深度学习的区别到底是什么?

3、这 725 个机器学习术语表,太全了!


看完本文有收获?请转发分享给更多人

关注「大数据与机器学习文摘」,成为Top 1%

点赞和在看就是最大的支持❤️

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/128574
 
539 次点击