机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易。
解螺旋为大家整理超多实用算法,包括KNN算法、kmeans 算法、决策树算法、贝叶斯公式、线性回归、非线性模型、神经网络、mlr3 包等。
KNN 算法,属于一种有监督学习中的分类算法,是所有机器学习算法中最简单但十分高效的方法。

kmeans 算法最初是在 1967 年提出的,当设定 k 个不同的聚类分组后,通过选取 k 个不同的样品作为聚类种子,随后根据其余样本到达这 k 个样品的距离大小,最终将整个样本分成 k 个不同的分组。


决策树(Decision Tree),是一种应用十分广泛的归纳推理算法。通过不断的学习解析表达式的特征,找到针对目标的学习规律。


贝叶斯不是一种模型,而是一类模型,是一类基于贝叶斯算法的模型,我们最常使用的是其中的一种模型被称为朴素贝叶斯(Naive Bayes)。

针对线性回归(简单线性回归)来说,自变量为数值型变量(离散型&连续型),而因变量则是要求为连续型变量且建议正态分布。


当我们做多了线性模型,或者线性模型的结果不好解释,亦或者线性模型的结果不符合我们预期的时候,我们往往会产生一种疑问:数据之间的关系就一定是线性的吗?不一定吧!数据之间的关系应该可以是线性相关,也可以是非线性相关才对。


从广义上来说,人工神经网络是一种通用模型,可以应用于几乎任何学习任务:分类、数字预测,甚至是无监督模式识别。

我们完全可以把 mlr3 包当成是一个仓库,里面存放着一系列拥有统一端口的机器学习算法, 这样会大大降低 R 语言进行机器学习的成本,方便我们后续进行多模型性能的评估。

......