Py学习  »  机器学习算法

LOGS 第2022/08/12期 || 麻省理工学院Hannes Stärk: EquiBind-用于药物结合的图几何深度学习

深度学习与图网络 • 2 年前 • 429 次点击  

图学习研讨会(LOGS)公众号会不定期地举行图学习相关的研讨会,邀请相关领域的专家,一线科研人员和顶会论文作者进行分享,希望能够给大家提供一个相互交流,研讨,和学习的平台。这一期我们邀请到了麻省理工学院博士研究生Hannes Stärk,他将为我们带来一期用于药物结合的图几何深度学习精彩报告


欢迎关注我们的GitHub页面:https://github.com/logseminar/Schedule

下面是报告的具体安排:


报告

时间

2022年8月12日 (星期五)

20:00  (北京时间/CST/HKT/SGT)

8:00 (美国东部时间/EST)

主  题

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

报告嘉宾

 Hannes Stärk @ MIT CSAIL

主持人

Jin DU @ CUHK

本次活动可以通过以下两种方式其中一种参与:

腾讯会议:


Zoom会议:


Topic: Drug Binding Structure Prediction and Molecular Dynamics Seminar

Time: Aug 12, 2022 07:45 PM Beijing, Shanghai


Join Zoom Meeting

https://cuhk.zoom.us/j/97310710238?pwd=MjZsY1NsaU5LRDBUUnZKT3JJV0QrQT09


Meeting ID: 973 1071 0238


Passcode: 655008

添加小编微信GNN4AI: 加入会议的讨论群,目前已经满200人


报告嘉宾:Hannes Stärk @ MIT


报告题目

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction


报告摘要

Predicting how a drug-like molecule binds to a specific protein target is a core problem in drug discovery. An extremely fast computational binding method would enable key applications such as fast virtual screening or drug engineering. Existing methods are computationally expensive as they rely on heavy candidate sampling coupled with scoring, ranking, and fine-tuning steps. We challenge this paradigm with EquiBind, an SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand's bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. Further, we show extra improvements when coupling it with existing fine-tuning techniques at the cost of increased running time. Finally, we propose a novel and fast fine-tuning model that adjusts torsion angles of a ligand's rotatable bonds based on closed-form global minima of the von Mises angular distance to a given input atomic point cloud, avoiding previous expensive differential evolution strategies for energy minimization.



报告人简介

Hi! Hannes Stärk is a PhD student at MIT with an M.Sc. Informatics from TU Munich. He works on graph/geometric machine learning and self-supervised learning, often with applications to proteins and smaller molecules. At MIT CSAIL, he is advised by Prof. Tommi Jaakkola and Prof. Regina Barzilay.


参考文献

EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/138730
 
429 次点击