社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

基于 Python(gma) 的克里金 (Kriging) 法插值的主要过程

气象学家 • 1 年前 • 541 次点击  

  由于克里金插值的复杂性,本文不再对其原理进行介绍。详情可自行百度。

  • 本算法基于 Python 的开源克里金插值包 pykrige。但本算法已对其进行改造,以使其符合 gma 的整体逻辑。
  • 本算法已不包含任何 pykrige 的原始代码。

原始代码构建

from gma.algorithm.spmis.interpolate import *

class Kriging(IPolate):
    '''克里金法插值'''
 # 继承 gma 的标准插值类 IPolate。本处不再做详细说明。
    def __init__(self, Points, Values, Boundary = None, Resolution = None, 
                 InProjection = 'WGS84'
                 VariogramModel = 'Linear',
                 VariogramParameters = None,
                 **kwargs)
:

        
        IPolate.__init__(self, Points, Values, Boundary, Resolution, InProjection)
        
        self.eps = eps
        
        # 初始化半变异函数及参数
        self.VariogramModel, self.VParametersList = GetVariogramParameters(VariogramModel, VariogramParameters)
        self.VariogramFUN = getattr(variogram, self.VariogramModel)
        if self.VParametersList is None:
            self.VParametersList = self._INITVariogramModel(**kwargs)
        
        # 调整输入数据
        if self.GType == 'PROJCS':
            self.Center = (self.Points.min(axis = 0) + self.Points.max(axis = 0)) * 0.5
            self.AnisotropyScaling = AnisotropyScaling
            self.AnisotropyAngle = AnisotropyAngle
            self.DistanceMethod = cdist
        else:
            # 方便后期优化
            self.Center = np.array([0,0])
            self.AnisotropyScaling = 1.0
            self.AnisotropyAngle = 0.0
            self.DistanceMethod = GreatCircleDistance
        
        self.AdjustPoints = AdjustAnisotropy(self.Points, self.Center, 
                                             [self.AnisotropyScaling], 
                                             [self.AnisotropyAngle])
        self.XYs = AdjustAnisotropy(self.XYs, self.Center,
                                    [self.AnisotropyScaling], 
                                    [self.AnisotropyAngle])
        
    def _INITVariogramModel(self, **kwargs):
        '''初始化参数'''
        
        if 'NLags' in kwargs:
            NLags = kwargs['NLags']
            initialize.ValueType(NLags, 'pint')
        else:
            NLags = 6
            
        if 'Weight' in kwargs:
            Weight = ToNumericArray(kwargs['Weight']).flatten().astype(bool)[0]
        else:
            Weight = False

        Lags, SEMI = INITVariogramModel(self.Points, self.Values, NLags, self.GType)
        
        # 为求解自动参数准备
        if self.VariogramModel == "Linear":
            X0 = [np.ptp(SEMI) / np.ptp(Lags), np.min(SEMI)]
            BNDS = ([0.00.0], [np.inf, np.max(SEMI)])
        elif self.VariogramModel == "Power":
            X0 = [np.ptp(SEMI) / np.ptp(Lags), 1.1, np.min(SEMI)]
            BNDS = ([0.00.0010.0], [np.inf, 1.999, np.max(SEMI)])
        else:
            X0 = [np.ptp(SEMI), 0.25 * np.max(Lags),  np.min(SEMI)]
            BNDS = ([0.00.00.0], [10.0 * np.max(SEMI), np.max(Lags), np.max(SEMI)])
        
        # 最小二乘法求解默认参数
        def _VariogramResiduals(Params, X, Y, Weight):
            if Weight:
                Weight = 1.0 / (1.0 + np.exp(-2.1972 / (0.1 * np.ptp(X)) * (0.7 * np.ptp(X) + np.min(X) - x))) + 1 
            else:
                Weight = 1
            return (self.VariogramFUN(X, *Params) - Y) * Weight

        RES = least_squares(_VariogramResiduals, X0, bounds = BNDS, loss = "soft_l1",
                            args = (Lags, SEMI, Weight))
                            
        return RES.x
    
    def _GetKrigingMatrix(self):
        """获取克里金矩阵"""
            
        LDs = self.DistanceMethod(self.AdjustPoints, self.AdjustPoints)
        
        A = -self.VariogramFUN(LDs, *self.VParametersList)
        A = np.pad(A, (01), constant_values = 1)
        # 填充主对角线
        np.fill_diagonal(A, 0.0)
 
        return  A
    
    def _UKExec(self, A, LDs, SearchRadius):
        """泛克里金求解"""
        Args = LDs.argsort(axis = 1)[:,:SearchRadius]
        Values = self.Values[Args.T].T
        
        # A 的逆矩阵
        AInv = inv(A)
        B = -self.VariogramFUN(LDs, *self.VParametersList)
        B[np.abs(LDs) <= self.eps] = 0.0
        B = np.pad(B, ((0,0),(0,1)), constant_values = 1)

        X = np.dot(B, AInv)
        
        B = B[np.ogrid[:len(B)], Args.T].T
        X = X[np.ogrid[:len(X)], Args.T].T
        X = X / X.sum(axis = 1, keepdims = True)

        UKResults = np.sum(X * Values, axis = 1), np.sum((X * -B), axis = 1)

        return UKResults
    
    def _OKExec(self, A, LDs, SearchRadius):
        """普通克里金求解"""
        Args = LDs.argsort(axis = 1)[:,:SearchRadius]
        LDs = LDs[np.ogrid[:len(LDs)], Args.T].T

        B = -self.VariogramFUN(LDs, *self.VParametersList)
        B[np.abs(LDs) <= self.eps] = 0.0
        B = np.pad(B, ((0,0),(0,1)), constant_values = 1)
 
        OKResults = np.zeros([2, len(LDs)])

        for i, b in enumerate(B):
            
            BSelector = Args[i] 
            ASelector = np.append(BSelector, len(self.AdjustPoints))
            a = A[ASelector[:, None], ASelector]  
            x = solve(a, b)
            
            OKResults[:, i] = x[:SearchRadius].dot(self.Values[BSelector]), -x.dot(b)

        return OKResults
    

    def Execute(self, SearchRadius = 12, KMethod = 'Ordinary'):
        '''克里金插值'''
        initialize.ValueType(SearchRadius, 'pint')
        SearchRadius = np.min([SearchRadius, len(self.AdjustPoints)])
        
        A = self._GetKrigingMatrix()

        LDs = self.DistanceMethod(self.XYs, self.AdjustPoints)
        
        if KMethod not in ['Universal''Ordinary']:
            raise ValueError("Undefined Kriging method. Please select 'Universal' or 'Ordinary'!")
        elif KMethod == 'Universal':
            KResults = self._UKExec(A, LDs, SearchRadius)
        else:
            KResults = self._OKExec(A, LDs, SearchRadius)
            
        NT = namedtuple('Kriging', ['Data''SigmaSQ''Transform'])
    
        return NT(KResults[0].reshape(self.YLAT, self.XLON),
                  KResults[1].reshape(self.YLAT, self.XLON), self.Transform)

插值应用

        示例数据可从:https://gma.luosgeo.com/ 或 联系博主获取。

在 gma 1.0.13.15 之后的版本可以直接引用。这里基于 1.0.13.15之后的版本引用做示例。

import gma
import pandas as pd

Data = pd.read_excel("Interpolate.xlsx")
Points = Data.loc[:, ['经度','纬度']].values
Values = Data.loc[:, ['值']].values

# 普通克里金(球面函数模型)插值
KD = gma.smc.Interpolate.Kriging(Points, Values, Resolution = 0.05
                                 VariogramModel = 'Spherical'
                                 VariogramParameters = None,
                                 KMethod = 'Ordinary',
                                 InProjection = 'EPSG:4326')

# 泛克里金类似,这里不做示例

gma.rasp.WriteRaster(r'.\gma_OKriging.tif',
                     KD.Data,
                     Projection = 'WGS84',
                     Transform = KD.Transform, 
                     DataType = 'Float32')

结果对比

   与 ArcGIS Ordinary Kriging 插值结果(重分类后)对比:

   与 pykrige 包 Universal Kriging 插值结果(重分类后)对比:









声明:欢迎转载、转发本号原创内容,可留言区留言或者后台联系小编(微信:gavin7675)进行授权。气象学家公众号转载信息旨在传播交流,其内容由作者负责,不代表本号观点。文中部分图片来源于网络,如涉及作品内容、版权和其他问题,请后台联系小编处理。

   欢迎加入气象学家交流群   

请备注:姓名/昵称-单位/学校-研究方向



往期推荐

 ERA5-Land陆面高分辨率再分析数据(32TB)

★ NASA最新版本CMIP6降尺度数据集30TB

★ ERA5常用变量再分析数据(26TB)

 EC数据商店推出Python在线处理工具箱

★ EC打造实用气象Python工具Metview

 TRMM 3B42降水数据(Daily/3h)

 科研数据免费共享: GPM卫星降水数据

 气象圈子有人就有江湖,不要德不配位!

 请某气象公众号不要 “以小人之心,度君子之腹”!

★ 机器学习简介及在短临天气预警中的应用

★ AMS推荐|气象学家-海洋学家的Python教程

★ Nature-地球系统科学领域的深度学习及理解

★ 采用神经网络与深度学习来预报降水、温度

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/149297
 
541 次点击