Python社区  »  机器学习算法

机器学习应用 | 使用 MATLAB 进行异常检测(下)

MATLAB • 1 周前 • 45 次点击  

在使用 MATLAB 进行异常检测(上)中,我们探讨了什么是异常值,简单的一维数据异常检测问题,针对高维数据的有监督异常检测方法。
在(下)篇中,我们将和大家一起探讨无监督异常检测。




\ | /

没有标签怎么办?试试无监督异常检测 


参考文档页面:Unsupervised Anomaly Detection[1]

对于没有标签信息的多变量样本数据,在MATLAB 可以使用以下方法检测异常值: 

 · 马氏距离 (Mahalanobis Distance):

如果数据符合多变量正态分布,可使用样本到数据集分布中心的马氏距离检测异常。利用稳健协方差估计robustcov[2] 函数计算马氏距离,进行离群值检测。

 · 局部离群因子 (Local Outlier Factor, LOF):

基于观测点和邻近样本之间的相对密度检测异常点。利用 lof[3] 函数可以创建 LocalOutlierFactor 对象,针对训练数据,直接返回检测结果。 

· 孤立森林 (Isolation forest):

通过一组孤立树模型,将异常值和正常数据点隔离。利用 iforest[4] 函数,创建 IsolationForest 对象,针对训练数据,直接返回检测结果。

 · 单类支持向量机 (One Class SVM):

在无监督条件下,训练支持向量机模型,在变换后的高维空间,将数据点和原点分离。利用 ocsvm[5] 函数创建OneClassSVM 对象,针对训练数据,直接返回检测结果。

针对测试数据进行异常检测时,使用第一种方法的具体检测步骤将在下文中通过示例说明,如果使用另外三种算法,可以直接调用检测模型的对象函数 isanomaly()。 

\ | /

具体实现方式

1.

利用马氏距离检测异常值





【定义】马氏距离:一种衡量样本和数据集分布间相似度的尺度无关的度量指标,例如y到中值点的距离是d2=(y-µ)Σ-1(y-µ)',其中Σ是多维随机变量的协方差矩阵,μ为样本均值。在MATLAB中可通过pdist2函数计算: 

d = pdist2(feat,mean(feat),"mahalanobis");

马氏距离可以理解为是对欧式距离的一种修正,假设,下图中蓝色点和黄色点离样本均值的欧式距离相近,但是由于样本整体分布沿 f(x)=x 的方向分布(变量之间具有相关性),蓝色点更有可能是数据集中的点,对应的马氏距离更小,而黄色点更有可能是离群值,对应马氏距离也更大。因此,设定一个合理的阈值,可以划分异常样本和正常样本。 

计算马氏距离,首先需要估计 Σ(sig) 和 μ(mu) 。极大似然估计(Maximum Likelihood Estimation, MLE)对数据中的异常值非常敏感,需要采取一种稳健的协方差估计方法,抵抗数据集中存在的异常观测数据。当数据中存在异常值时,协方差行列式偏大。使用最小协方差行列式估计 (Minimum Covariance Determinant, MCD),从 n 个数据样本中,最多选取h个观测值,找到协方差行列式最小的一组观测子集,计算其平均值和协方差,作为估计量。robustcov 函数提供了 FAST-MCD、OGK 和 Olive-Hawkins 三种算法供选择。假设训练数据集中,异常占比为 0.9%:

contaminationFraction = 0.09;[sig,mu,mah,tf] = robustcov(feat, ...    OutlierFraction=contaminationFraction);

如果数据符合正态分布的假设,马氏距离的平方值,将服从具有 Dim 个自由度的 χ分布,Dim 为原数据的维度。默认情况下,robustcov 函数假设数据符合多变量正态分布,并根据 χ分布的临界值,将输入样本的 2.5% 作为异常值,如需调整异常值占比,可以使用 chi2inv 函数,重新计算阈值:

mah_threshold = sqrt(chi2inv(1-contaminationFraction,Dim));tf_robustcov = mah > mah_threshold;

利用pdist2函数,计算测试集的马氏距离后与阈值mah_threshold进行比较:

dTest = pdist2(featureTestNoLabels.Variables, ...mean(featureTestNoLabels.Variables),"mahalanobis");isanomalyTest = dTest > mah_threshold;predTest = categorical(isanomalyTest, [1, 0], ["Anomaly", "Normal"]);

可视化检测结果:

tiledlayout(3,1)nexttilegscatter(X(:,1),X(:,2),tf_robustcov,[],'ox',3)xlabel('X1')ylabel('X2')legend({'正常','异常'})


    
title("训练样本分类结果 (tSNE降维)")
nexttileplot(d,mah,'o')line([mah_threshold, mah_threshold], [0, 30], 'color', 'r')line([0, 6], [mah_threshold, mah_threshold], 'color', 'r')hold onplot(d(tf), mah(tf), 'r+')xlabel('Mahalanobis Distance')ylabel('Robust Distance')title('DD Plot')hold off
nexttileconfusionchart(trueAnomaliesTest, predTest, ...    Title="测试结果评估-混淆矩阵 (马氏距离)", Normalization="row-normalized");


小结

· 以上方法在高维数据上应用效果不理想,可以看到,测试集中异常数据假阴率高。这个方法适用于数据符合或接近正态分布的情况,但是通常情况下,实际数据的分布规律难以预估。

    ◆   

2.

局部离群因子

参考文档页面:Local outlier factor model for anomaly detection [6]





该算法通过计算样本 p 和其周围 k 个近邻点的局部可达密度(local reachability density, lrd),即观测样本 p 到近邻点的局部可达距离平均值的倒数:

其中,为k近邻集合,样本p关于观测点o的局部可达距离定义为:

其中 dk(0)为观测点到其近邻的第k个最小距离, d(p,0) 为样本 p 和观测点 o 之间的距离,可参考下图示意。

再根据p的局部可达密度与近邻点的局部可达密度比值的平均值,量化每个样本的离群程度,具体计算可参考以下公式:

Ird(·)为局部可达密度函数,|Nk(p)|为近邻数量。

因此,对于正常样本,一般 LOF 值小于或接近 1,意味着其局部可达密度和近邻点相近或更高,该样本和邻域内的样本同属一个簇,当 LOF 值大于 1 时,则可能为异常值,利用 ContaminationFraction 参数可调整 LOF 的阈值。

[mdlLOF,tfLOF,scoresLOF] = lof(feat, ...    ContaminationFraction=0.09, ...    NumNeighbors=1000, Distance="mahalanobis");[isanomalyLOF,~] = isanomaly(mdlLOF, featureTestNoLabels.Variables);predLOF = categorical(isanomalyLOF, [1, 0], ["Anomaly", "Normal"]);

可视化检测结果:

tiledlayout(3,1)nexttilegscatter(X(:,1),X(:,2),tfLOF,[],'ox',3)xlabel('X1')ylabel('X2')legend({'正常','异常'})title("训练样本分类结果 (tSNE降维)")

随机选取部分样本,查看对应 LOF 值/异常得分

nexttileidxes = randi(NumSamples,1,60);scatter(X(idxes,1),X(idxes,2),5,'filled','MarkerFaceColor','k')hold onbubblechart(X(idxes,1),X(idxes,2),scoresLOF(idxes)/100, ...'r','MarkerFaceAlpha',0);legend({'数据点','异常得分'})hold offtitle("训练样本异常得分分布")
nexttileconfusionchart(trueAnomaliesTest, predLOF, ...    Title="测试结果评估-混淆矩阵 (LOF)", Normalization="row-normalized");


小结

· 优点:不受数据分布的影响,同时考虑了数据集的局部和全局属性,比较适用于中等高维的数据集,针对示例数据集的预测准确度比较理想。

· 使用限制:对近邻参数较为敏感,由于需要计算数据集中任意两个数据点的距离,算法的时间复杂度较高,在大规模数据集上效率偏低,适合小规模到中等规模的数值型数据。

    ◆  

3.

孤立森林

参考文档页面:Anomaly Detection with Isolation Forest  [7]





孤立森林算法中,集成了多个决策树模型,训练时,每个决策树对一个不放回采样的数据子集进行分裂,以试图将每一个观测样本划分到一个对应的叶节点上。假设异常点与其他正常数据差异较大,从根节点到对应叶节点需要经过的路径长度 (path length) 相对较短,对于每个样本,将孤立森林中的多个决策树路径长度的平均值,定义为对应样本的异常得分 (anomaly score)。

[mdlIF,tfIF,scoreTrainIF] = iforest(feat, ContaminationFraction=0.09);[isanomalyIF,~] = isanomaly(mdlIF, featureTestNoLabels.Variables);predIF = categorical(isanomalyIF, [1, 0], ["Anomaly", "Normal"]);

可视化检测结果:

tiledlayout(3,1)nexttilegscatter(X(:,1),X(:,2),tfIF,[],'ox',3)xlabel('X1')ylabel('X2')legend({'正常','异常'})title("训练样本分类结果 (tSNE降维)")
nexttilehistogram(scoreTrainIF)xline(mdlIF.ScoreThreshold,"k-",join(["Threshold =" mdlIF.ScoreThreshold]))title("训练样本异常得分分布")
nexttileconfusionchart(trueAnomaliesTest, predIF, ...    Title="测试结果评估-混淆矩阵 (孤立森林)", Normalization="row-normalized");


小结

· 优点:适合高维表格数据,不需要计算关于距离和密度的指标,具有线性时间复杂度,每个决策树可独立采样,支持并行化处理来实现加速。

· 使用限制:孤立森林适用于训练集和测试集中,正常样本和异常样本占比接近的情况,且异常样本的特征与正常样本差异很大。

    ◆  

4.

单类支持向量机

参考文档页面:Fit one-class support vector machine (SVM) model for anomaly detection   [8]





单类支持向量机,或无监督支持向量机,构建决策边界,将训练集中的数据点尽可能划分为一个类别,位于决策边界之外的数据则为异常值。

策略是通过核函数将数据映射到新的高维特征空间,在数据与原点间构建超平面(n 维平面)。因为,在低维空间中的非线性特征往往不是线性可分的,在扩展到高维空间后是可分的。在 MATLAB 中,一种实现方法是使用用于构建标准的支持向量机分类模型的 fitcsvm 函数(MATLAB R2022b前),另一种实现方法是使用 ocsvm 函数(MATLAB R2022b 起)。

fitcsvm 函数的求解是基于 SVM 的对偶问题形式,需要求解每对样本的格拉姆矩阵(Gram Matrix),相关示例可在 MATLAB 命令行输入以下指令打开:

>> openExample('stats/DetectOutliersUsingSVMAndOneClassLearningExample')

ocsvm 函数的求解则是基于 SVM 的原型问题形式,并使用高斯核进行一类学习,以找到决策边界,针对大规模数据集,求解效率更高。将 KernelScale 设为 "auto" 以启发式地选取合适核函数参数。

[mdlSVM,tfOCSVM,scoreTrainOCSVM] = ocsvm(feat, ...    ContaminationFraction=0.09, ...    StandardizeData=true,KernelScale="auto");[isanomalyOCSVM,~] = isanomaly(mdlSVM, featureTestNoLabels.Variables);predOCSVM = categorical(isanomalyOCSVM, [1, 0], ["Anomaly", "Normal"]);

可视化检测结果:

tiledlayout(3,1)nexttilegscatter(X(:,1),X(:,2),tfOCSVM,[],'ox',3)xlabel('X1')ylabel('X2')legend({'正常','异常'})title("训练样本分类结果 (tSNE降维)")
nexttilehistogram(scoreTrainOCSVM, Normalization="probability")xline(mdlSVM.ScoreThreshold,"k-", ...    join(["Threshold =" mdlSVM.ScoreThreshold]))title("训练样本异常得分分布")
nexttileconfusionchart(trueAnomaliesTest, predOCSVM,...    Title="测试结果评估-混淆矩阵 (OCSVM)", Normalization="row-normalized");


小结

· 优点:可以处理高维数据,适合表格/结构化数据。

· 使用限制:分类变量需要先转换为虚拟变量(哑变量,Dummy Variable),ocsvm函数中可定义相关参数CategoricalPredictors ,以自动进行转换。

结果对比






在该数据集的离群值检测问题中,孤立森林、局部离群因子与单类支持向量机的结果比较接近,各自的准确度都比较理想,预测结果的重合度也超过了90%:

mean((predIF==predLOF) & (predLOF==predOCSVM))

ans = 0.9325

利用马氏距离/稳健协方差估计的方法,结果不理想,与其他三个算法的结果差异较大:

mean((predIF==predLOF) & (predLOF==predOCSVM) & (predOCSVM==predTest))

ans = 0.6196

综上,各个方法的适用范围不一,或是有特定的使用条件,在使用时需要多加留意,例如马氏距离适合符合正态分布假设的数据集,孤立森林适用于处理正常样本和异常样本差异较大的情况,各个算法计算复杂度有些许区别,可以根据实际情况选择合适的方法。

    ◆  

关键点回顾






· 在处理异常检测问题时,首先需要充分了解您的数据

· 如果您有足够的标注数据(包括异常),可使用有监督学习方法进行异常检测

· 如果您的数据大部分都是正常数据,或者异常数据难以获取或标记,则可以考虑使用无监督的异常检测方法

如果您有更多感兴趣的话题或其他观点,欢迎留言告知我们。

参考文献

[1] Unsupervised Anomaly Detection:https://ww2.mathworks.cn/help/stats/unsupervised-anomaly-detection.html%20/l%20mw_770db8b2-dea5-4ab2-8ab2-287957d26f90

[2]robustcov:https://ww2.mathworks.cn/help/stats/robustcov.html

[3]lof:https://127.0.0.1:31515/static/help/stats/lof.html\

[4]iforest:https://127.0.0.1:31515/static/help/stats/iforest.html

[5]ocsvm:https://127.0.0.1:31515/static/help/stats/ocsvm.html

[6]Local outlier factor model for anomaly detection:https://ww2.mathworks.cn/help/releases/R2022b/stats/localoutlierfactor.html?requestedDomain=cn

[7]Anomaly Detection with Isolation Forest:https://ww2.mathworks.cn/help/releases/R2022b/stats/anomaly-detection-with-isolation-forest.html?requestedDomain=cn

[8]Fit one-class support vector machine (SVM) model for anomaly detection:https://ww2.mathworks.cn/help/releases/R2022b/stats/ocsvm.html

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/149713
 
45 次点击  
分享到微博