社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

Npj Comput. Mater.: 深度学习预测多种电极材料电压

知社学术圈 • 2 年前 • 270 次点击  

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

随着社会的高速发展,人们对能源的需求量也越来越大。锂电池作为重要的能量存储单元,虽然在小型可移动电子设备及大型电网领域都取得了很大的成功,但锂元素在地壳中的储备很低,电池能量密度低等因素,大大限制了锂电池的应用和发展。现在人们急需寻找大容量且价格便宜的锂离子电池替代品。


多价金属离子电池,比如镁离子、钙离子、锌离子及铝离子,相应金属元素地壳储备丰富,多价特性有助于增大电池容量,而且这些金属离子与锂离子的性质相似,是理想替代品之一。但如果像之前研究锂离子电池一样逐个研究各个电极材料性质,需要耗费大量的人力物力财力。幸运的是,目前materials project中已经存储了很多各种金属离子电池的数据,大数据的建立以及各种机器学习模型的开发,使得我们在这一领域的研究变得更加快捷。

近日,北京大学物理学院,量子材料协同创新中心的吕劲老师与新加坡国立大学机械工程系的沈雷老师合作,训练得到了一个可快速准确预测多价金属离子电池电极材料电压的深度学习模型。尽管深度学习模型对于大数据集可以得到预测准确度很高的模型,比如此研究中使用的结构图像卷积神经网络(CGCNN)模型预测锂离子电池电极材料电压时的平均绝对误差(MAE)只有0.32 V。但是因为多价金属离子电池的相关数据非常少,比如铝离子电池在Materials Project数据库中只有149个数据点,直接使用这些数据训练预测多价金属离子电池电压的模型,会使模型准确度非常低。

Fig. 1 Illustration of the interpretable crystal graph convolutional neural network.

于是,团队在训练好的锂离子电池电极材料电压预测模型的基础上,使用转移学习继续训练模型使得模型预测多价金属离子电池电极材料电压的误差从2.14 V下降到了0.47 V。然而,深度学习模型的可解释性和可视化却大大降低了模型的可信度,因为人们无从得知深度学习模型是否是因为正确寻找到了输入与输出之间的关联才得到了这么高的准确率。因此,联合课题组又进一步逐层观察模型中间层结果,分析电极材料元素之间的相似性以及元素的局域环境,发现元素周期表中不同族的元素对材料电压的影响也不同,如,p轨道元素的参与会使得电极电压增大,而前过渡金属元素的出现会使得电极电压减小,由此研究人员可以通过元素替换的方法得到具有更高电压的电极材料。

Fig. 2 Plots of predicted voltage and target voltage for the metal-ion batteries.

这样的研究结果,有助于设计发现和设计满足不同需求的电极材料,加速电池领域的研究。课题组将预测模型建立了网页http://batteries.2dmatpedia.org/,方便研究人员使用模型快速预测任意电极材料电压。

 Fig. 3 Visualization of the DL model. 


论文链接:
https://www.nature.com/articles/s41524-022-00858-9


点击下方知社人才广场,查看最新学术招聘

扩展阅读

 

NPJ:电极/固态电解质—基于空间群演化预测基态有序相
Nat. Commun.: 成本极低,但性能极高的锂电池固态电解质
韩布兴团队NSR综述:用于CO2电催化转化的离子液体基电解质
npj:锂离子电池(LIB)阳极固体电解质界面——想要模拟?
本文系网易新闻·网易号“各有态度”特色内容
媒体转载联系授权请看下方

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/150476
 
270 次点击