每天学Python新技能
来源丨网络
最近开发了一个手势处理的项目(零基础也可以学,就是针对零基础的),我在这儿简单的复述一下原理,总体来说还是比较简单的,主要运用的知识就是opencv,python基本语法,图像处理基础知识。
最终实现结果:

获取视频(摄像头)
这部分没啥说的,就是获取摄像头。
cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")while(True): ret, frame = cap.read() key = cv2.waitKey(50) & 0xFF if key == ord('q'): breakcap.release()cv2.destroyAllWindows()
肤色检测
这里使用的是椭圆肤色检测模型。
在RGB空间里人脸的肤色受亮度影响相当大,所以肤色点很难从非肤色点中分离出来,也就是说在此空间经过处理后,肤色点是离散的点,中间嵌有很多非肤色,这为肤色区域标定(人脸标定、眼睛等)带来了难题。
如果把RGB转为YCrCb空间的话,可以忽略Y(亮度)的影响,因为该空间受亮度影响很小,肤色会产生很好的类聚。
这样就把三维的空间将为二维的CrCb,肤色点会形成一定得形状,如:人脸的话会看到一个人脸的区域,手臂的话会看到一条手臂的形态。
def A(img):
YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y,cr,cb) = cv2.split(YCrCb) cr1 = cv2.GaussianBlur(cr, (5,5), 0) _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
res = cv2.bitwise_and(img,img, mask = skin) return res
轮廓处理
轮廓处理的话主要用到两个函数,cv2.findContours和cv2.drawContours,这两个函数的使用使用方法很容易搜到就不说了,这部分主要的问题是提取到的轮廓有很多个,但是我们只需要手的轮廓,所以我们要用sorted函数找到最大的轮廓。
def B(img):
h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) contour = h[0] contour = sorted(contour, key = cv2.contourArea, reverse=True) bg = np.ones(dst.shape, np.uint8) *255 ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) return ret

全部代码
""" 从视频读取帧保存为图片"""import cv2import numpy as npcap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")
def A(img):
YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y,cr,cb) = cv2.split(YCrCb) cr1 = cv2.GaussianBlur(cr, (5,5), 0) _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) res = cv2.bitwise_and(img,img, mask = skin) return res
def B(img):
h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) contour = h[0] contour = sorted(contour, key = cv2.contourArea, reverse=True) bg = np.ones(dst.shape, np.uint8) *255 ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) return ret
while(True):
ret, frame = cap.read() src = cv2.resize(frame,(400,350), interpolation=cv2.INTER_CUBIC) cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0)) roi = src[60:300 , 90:300]
res = A(roi) cv2.imshow("0",roi)
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) dst = cv2.Laplacian(gray, cv2.CV_16S, ksize = 3) Laplacian = cv2.convertScaleAbs(dst)
contour = B(Laplacian) cv2.imshow("2",contour)
key = cv2.waitKey(50
) & 0xFF if key == ord('q'): breakcap.release()cv2.destroyAllWindows()