社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

如何信任AI:零知识机器学习(ZKML)提供怎样的思路?

吉时通信 • 1 年前 • 137 次点击  

摘要

随着AI以超乎想象的速度演化,必将引起对AI利剑的另一“刃”——信任——的担忧。首先是隐私方面:AI时代,人类从数据隐私的角度如何信任AI?也许AI模型的透明度是更为担忧的关键:类似大规模语言模型的涌现能力,对人类来说无异于一个无法看透的科技“黑匣子”,一般用户并不能理解模型是如何运行的、运行结果又是如何获得的——更麻烦的是,作为用户可能并不知道服务商提供的AI模型是否如承诺的那样运行。尤其是在一些敏感数据上应用AI算法和模型,如医疗、金融、互联网应用等,AI模型是否具有偏见(甚至恶意导向)、或者服务商是否按照承诺那样准确无误地运行模型(以及相关参数),成为用户最为关心的问题。零知识证明技术在这方面有着针对性的解决方案,于是零知识机器学习(ZKML)成为最新崛起的发展方向。


综合考虑到计算的完整性、启发性优化以及隐私,零知识证明和AI的结合下,零知识机器学习(Zero-Knowledge Machine Learning,ZKML)应运而生。在AI生成内容越来越逼近与人类产生的内容的时代,零知识密证明的技术特点可以帮助我们确定特定内容是通过特定模型产生的。对于隐私保护,零知识证明技术特别重要,即可以在不泄露用户数据输入或模型具体细节的情况下完成证明和验证。


零知识证明应用于机器学习的五种方式:计算完整性、模型完整性、验证、分布式训练和身份验证。最近大型语言模型 (LLM) 的快速发展表明这些模型变得越来越智能,这些模型完善了算法与人类的重要接口:语言。通用人工智能 (AGI) 的趋势已经不可阻挡,但就现在的模型训练结果来看,AI可以在数字交互中完美模仿高能力的人类——且在快速的演进中以不可想象的速度达到超越人类的水平,使得人类不得不惊叹这种进化速度、甚至产生被AI迅速替代的忧虑。


社区开发者利用ZKML对Twitter推荐功能进行验证,具有一定启发性。Twitter的“For You”推荐功能利用一种AI推荐算法,将每天发布的大约 5 亿条推文提炼成少数几条热门推文,最终显示在用户主页的时间轴上。2023年3月底,Twitter开源该算法,但因模型细节未公开,用户依然无法验证算法是否准确、完整运行。社区开发者Daniel Kang等利用密码学工具ZK-SNARKs来检查Twitter推荐算法是否正确、完整运行而无需公开算法细节——这正是零知识证明最吸引人之处,即不透露关于对象的任何具体信息(零知识)的前提下证明该信息的可信性。最理想的情况是,Twitter可以使用ZK-SNARKS 来发布其排名模型的证明——证明当该模型应用于特定用户和推文时,它会产生特定的最终输出排名。该证明则是该模型可信的基础:用户可以自行验证模式算法的计算是否按承诺执行——或者交给第三方来进行审计。这一切都是在不公开模型参数权重细节的基础上进行。也就是说,利用官方公布的模型证明,用户对具体的有疑问的推文,利用该证明来验证特定推文是否按照模型承诺那样诚实运行。


投资建议:AI迅速演化的背景下,我们聚焦:1)算力:中际旭创、新易盛、天孚通信、太辰光、腾景科技、中兴通讯、紫光股份、锐捷网络;2)三大运营商,中国电信、中国移动、中国联通;3)内容审查与IP保护:人民网、新华网、博汇科技、恒为科技、浩瀚深度。


风险提示:ZKML商业模式落地不及预期;监管政策的不确定性。


1. 核心观点

随着AI以超乎想象的速度演化,必将引起对AI利剑的另一“刃”——信任——的担忧。首先是隐私方面:AI时代,人类从隐私的角度如何信任AI?也许AI模型的透明度是更为担忧的关键:类似大规模语言模型的涌现能力,对人类来说无异于一个无法看透的科技“黑匣子”,一般用户并不能理解模型是如何运行的、运行结果又是如何获得的(本身模型就充满了难以理解或者预测的能力)——更麻烦的是,作为用户可能并不知道服务商提供的AI模型是否如承诺的那样运行。尤其是在一些敏感数据上应用AI算法和模型,如医疗、金融、互联网应用等,AI模型是否具有偏见(甚至恶意导向)、或者服务商是否按照承诺那样准确无误地运行模型(以及相关参数),成为用户最为关心的问题。


零知识证明技术在这方面有着针对性的解决方案,于是零知识机器学习(ZKML)成为最新崛起的发展方向。本文探讨了ZKML技术的特点、潜在应用场景和一些具有启发性的案例,并对ZKML的发展方向及可能的产业影响做了研究阐述。

2. AI利剑的“另一刃”:如何信任AI?

人工智能的能力正在迅速接近人类,并且已经在许多利基领域超越了人类。最近大型语言模型 (LLM) 的快速发展表明这些模型变得越来越智能,这些模型完善了算法与人类的重要接口:语言。通用人工智能 (AGI) 的趋势已经不可阻挡,但就现在的模型训练结果来看,AI可以在数字交互中完美模仿高能力的人类——且在快速的演进中以不可想象的速度达到超越人类的水平。语言模型最近取得了重大进展,以ChatGPT为代表的产品表现惊艳,在大多数常规评估中达到了人类能力的 20% 以上,当比较仅相隔几个月的GPT-3.5 和 GPT-4 时,使得人类不得不惊叹这种进化速度。但另一面则是对AI能力失控的担忧。


首先是隐私方面。AI时代,随着人脸识别等技术的发展,用户在体验AI服务的同时,时刻都在担心数据泄露风险。这给AI的推广和发展带来了一定阻碍——从隐私的角度如何信任AI?


也许AI模型的透明度是更为担忧的关键。类似大规模语言模型的涌现能力,对人类来说无异于一个无法看透的科技“黑匣子”,一般用户并不能理解模型是如何运行的、运行结果又是如何获得的(本身模型就充满了难以理解或者预测的能力)——更麻烦的是,作为用户可能并不知道服务商提供的AI模型是否如承诺的那样运行。尤其是在一些敏感数据上应用AI算法和模型,如医疗、金融、互联网应用等,AI模型是否具有偏见(甚至恶意导向)、或者服务商是否按照承诺那样准确无误地运行模型(以及相关参数),成为用户最为关心的问题。如社交应用平台是否按照“一视同仁”的算法进行相关推荐?来自金融服务商AI算法的推荐是否如承诺的那样准确、完整运行?AI的推荐的医疗服务方案是否有不必要的消费?服务商是否接受对AI模型进行审计?


简单来说,一方面用户并不知道服务商提供的AI模型的真实情况,同时非常担心模型并非“一视同仁”,AI模式被认为加入一些带有偏见或者其他导向的因素,会给用户带来未知的损失或负面影响。


另一方面,AI的自我演化速度似乎越来越难以预测,越来越强大的AI算法模型似乎越来越超出人控制的可能,因此信任问题成为AI这把利剑的另一“刃”。



需要从数据隐私、模型透明度、模型可控性等角度建立用户对AI的信任。用户需要担心隐私保护以及算法模型是否如承诺的那样准确、完整运行;然而这并非易事,就模型透明度而言,模型提供商基于商业秘密等角度,对模型的审计和监督方面存有顾虑;另一方面算法模型自身的演化并不易控,这一点不可控性也需要考虑到。




用户数据隐私保护的角度,在我们之前的报告如《Web3.0驱动下的AI和数据要素:开放、安全与隐私》也多有研究,Web3.0的一些应用在这方面极具启发性——即在完整用户数据确权、数据隐私保护的前提下进行AI模型训练。


但目前市场为Chatgpt这类大模型的惊艳表现而折服,还未考虑到模型自身的隐私问题、算法“涌现”特征的演化带来的模型的信任问题(以及不可控性带来的信任),但另一层面,用户对所谓算法模型的准确、完整和诚实运行一直持怀疑态度。因此,AI的信任问题,应该从用户、服务商和模型不可控性三个层面来解决。

3. ZKML:零知识证明与AI结合带来信任

3.1.零知识证明:zk-SNARKS、zk-STARK等技术日趋成熟


零知识证明(Zero Knowledge Proof,ZKP)最早由MIT的Shafi Goldwasser和Silvio Micali在1985年一篇名为《互动式证明系统的知识复杂性》的论文中提出。作者在论文中提到,证明者(prover)有可能在不透露具体数据的情况下让验证者(verifier)相信数据的真实性。公共的函数f(x)和一个函数的输出值y,Alice对Bob说她知道x值,但是Bob不信。为此,Alice使用零知识证明算法,来生成一个证明。Bob验证这个证明,确认Alice是不是真的知道满足函数f的x。


举例来说,利用零知识证明,可以不知道小明考试的成绩,而可以知道其成绩是否满足用户的要求——比如是否及格、是否填空题正确率超过60%等等。在AI领域,结合零知识证明,则可以对AI模型有可靠的信任工具。


零知识证明可以是交互式的,即证明者面对每个验证者都要证明一次数据的真实性;也可以是非交互式的,即证明者创建一份证明,任何使用这份证明的人都可以进行验证。



零知识分为证明和验证两部分,一般来说证明是准线性的,即验证是T*log(T)的。


假设验证时间是以交易数量对数的平方,那么10000笔交易一个块的机器验证时间是

VTime = ( )2 ~ (13.2)2 ~ 177 ms;现在将块大小增加一百倍(达到100万tx/块),验证器的新运行时间是VTime = (log2 1000000)2 ~ 202 ~ 400 ms。因此,我们能看到其超强的可拓展性,这就是为什么说,从理论上tps能够达到无限的原因。


验证是非常快的,而所有的难点就在于生成证明这一部分。只要生成证明的速度跟得上,那么链上验证就很简单。零知识证明目前有多种实现方式,如zk-SNARKS、zk-STARKS、PLONK以及Bulletproofs。每种方式在证明大小、证明者时间以及验证时间上都有自己的优缺点。


零知识证明越复杂、越大,则性能越高,验证所需的时间越短。如下图,STARKs和Bulletproofs无需可信设置,随着交易数据量从1TX激增至10000TX,后者证明的大小增加的更少。Bulletproofs的优点是证明的大小是对数变换(即使f和x很大),有可能将证明存入区块,但其验证的计算复杂度是线性的。可见各类算法都有很多要权衡的关键点,亦有很多待升级的空间,然而在实际运行过程中,生成证明的难度远比想象中的要大,因此现在行业都致力于解决生成证明的问题。



虽然零知识证明技术的发展还不足以匹配类似大语言模型(LLM)的规模,但其技术实现有着启发性的应用场景。特别是在AI双刃剑的发展状况下,零知识证明为AI信任化提供了可靠的解决方案。


3.2.零知识机器学习(ZKML):去信任化的AI


在AI生成内容越来越逼近于人类所产生的内容的时代,零知识密证明的技术特点可以帮助我们确定特定内容是通过将特定模型产生的。对于隐私保护,零知识证明技术特别重要,即可以在不泄露用户数据输入或模型具体细节的情况下完成证明和验证。综合考虑到计算的完整性、启发性优化以及隐私,零知识证明和AI的结合下,零知识机器学习(Zero-Knowledge Machine Learning,ZKML)应运而生。



以下是零知识证明应用于机器学习的五种方式。除计算完整性、模型完整性和用户隐私这些基础功能外,零知识机器学习还能带来分布式训练——这将促进AI与区块链的融合,以及人来在AI丛林里的身份证明(该部分可以详见我们的报告《OpenAI创始人的Web3愿景:Worldcoin打造AI数字通行证》)。



AI大模型对算力的需求是有目共睹的,而此时由将ZK证明穿插到AI应用中来,对硬件算力则带来新的需求。零知识系统的当前技术水平与高性能硬件相结合,依旧无法证明与当前可用的大型语言模型(LLM)一样大的东西,但已经取得了一些进展创建较小模型的证明。根据Modulus Labs团队针对各种不同规模的模型对现有的 ZK 证明系统进行了测试。如plonky2等证明系统,可以在功能强大的 AWS 机器上运行约 50 秒,为大约 1800万参数规模的模型创建证明。



就硬件而言,ZK技术目前的硬件选择包括GPU、FPGA 或 ASIC。需要注意的是零知识证明仍处于早期发展阶段,目前仍然很少有标准化,且算法也在不断更新变化中。每种算法都有其特点,适合于不同的硬件,且随着项目发展需求每种算法都会有一定程度改进,因此很难去具体评估哪种算法最优。



需要注意的是,ZK与AI大模型的结合方面,还未有明确的研究对现有的硬件系统进行评估,因此,未来硬件需求方面还存在较大的变数与潜力。


3.3.启发性案例:验证Twitter推荐排名算法


Twitter的“For You”推荐功能利用一种AI推荐算法,将每天发布的大约 5 亿条推文提炼成少数几条热门推文,最终显示在用户主页的“For You”时间轴上。该推荐从推文、用户和参与数据中提取潜在信息以便能够提供更相关的推荐。2023年3月底,Twitter开源了推荐功能“For You”在时间轴上选择和排名帖子的算法。推荐流程大致如下:

1)从用户与网站的交互中生成用户行为特征,从不同的推荐来源获取最佳推文;

2)使用AI算法模型对每条推文进行排名;

3)应用启发功能和过滤器,例如过滤掉来自用户已阻止的推文内容和已经看过的推文等。


该推荐算法最核心的模块是负责构建和提供 For You 时间线的服务—— Home Mixer。该服务充当连接不同候选源、评分函数、启发式方法和过滤器的算法主干。



“For You”推荐功能根据大约 1500 个可能相关的候选推荐,预测每个候选推文的相关性并进行评分。推特官网称在此阶段,所有候选推文都受到平等对待。而最核心的排名则是通过一个约 4800万参数的神经网络实现的,该神经网络在推文交互上持续训练以优化。这种排名机制考虑了数千个特征并输出十个左右的标签来为每条推文打分,其中每个标签代表参与的概率,然后根据这些分数对推文进行排名。


虽然这是推特推荐算法迈向透明的重要一步,但用户依然无法验证算法是否准确、完整运行——一个主要原因是用于对推文进行排名的算法模型中具体的权重细节以保护用户隐私的缘由而未公开。因此,算法的透明度依旧存疑。


利用ZKML(零知识机器学习)技术,可以在Twitter 不公开算法模型权重细节的情况下证明是否准确、完整运行(模型及其参数对不同用户是否“一视同仁”),这使得在算法模型隐私保护和透明性之间取得了很好的平衡。


社区开发者Daniel Kang等利用密码学工具ZK-SNARKs来检查Twitter推荐算法是否正确、完整运行而无需公开算法细节——这正是零知识证明最吸引人之处,即不透露关于对象的任何具体信息(零知识)的前提下证明该信息的可信性。最理想的情况是,Twitter可以使用ZK-SNARKS 来发布其排名模型的证明——证明当该模型应用于特定用户和推文时,它会产生特定的最终输出排名。该证明则是该模型可信的基础:用户可以自行验证模式算法的计算是否按承诺执行——或者交给第三方来进行审计。这一切都是在不公开模型参数权重细节的基础上进行。也就是说,利用官方公布的模型证明,用户对具体的有疑问的推文,利用该证明来验证特定推文是否按照模型承诺那样诚实运行。



假设用户认为“For You”推荐功能的时间线值得怀疑——认为某些推文的排名应该更高(或低)。如果Twitter 能够上线ZKML证明功能,用户可以利用官方给出的证明来自行检查怀疑的推文与时间轴中的其他推文相比排名如何(计算出的分数对应着排名),如果排名与模型的分数不符,则表示对这些特定推文的算法模型并非诚实运行(而是人为地在一些参数上有变化)。可以这样理解,官方虽然不公布模型的具体细节,但是根据模型给出了一把魔法棒(模型产生的证明),任何推文利用这个魔法棒都能展现相关排名分数——而根据这个魔法棒却无法还原模型隐私细节。因此,官方模型的细节隐私得到保护的情况下获得审计。



站住模型的角度,在保护模型隐私的情况下,利用ZKML技术,依旧可以使模型获得审计和用户的信任。

投资建议:重视数据要素、算力与网络安全及内容审查板块

我们认为,AI迅速演化的背景下,人的数字身份和人格证明成为重要的基础设施,而AI冲击下的人的经济权益和社会权益的保障也需要在开放、安全、隐私和财富分配层面取得平衡。


二级市场,我们建议聚焦:


1)三大运营商,中国电信601728、中国移动600941、中国联通600050;


2)算力产业链:中际旭创300308、新易盛300502、天孚通信300394、太辰光300570、腾景科技688195、中兴通讯000063、紫光股份000938、锐捷网络301165;


3)内容审查与IP保护:人民网603000、新华网603888、博汇科技688004、恒为科技603496、浩瀚深度688292;

风险提示

ZKML商业模式落地不及预期:零知识证明等密码学等相关技术和项目处于发展初期,存在商业模式落地不及预期的风险;AI相关算法和生态发展不及预期。


监管政策的不确定性:ZKML项目实际运行过程中涉及到多项数据隐私保护、金融、网络及其他监管政策,目前各国监管政策还处于研究和探索阶段,并没有一个成熟的监管模式,所以行业面临监管政策不确定性的风险。


本文节选自国盛证券研究所已于2023年6月25日发布的报告《如何信任AI:零知识机器学习(ZKML)提供怎样的思路?》,具体内容请详见相关报告。

宋嘉吉  S0680519010002 songjiaji@gszq.com

任鹤义  S0680519040002 renheyi@gszq.com

特别声明:《证券期货投资者适当性管理办法》于2017年7月1日起正式实施。通过微信形式制作的本资料仅面向国盛证券客户中的专业投资者。请勿对本资料进行任何形式的转发。若您非国盛证券客户中的专业投资者,为保证服务质量、控制投资风险,请取消关注,请勿订阅、接受或使用本资料中的任何信息。因本订阅号难以设置访问权限,若给您造成不便,烦请谅解!感谢您给予的理解和配合。
重要声明:本订阅号是国盛证券通信团队设立的。本订阅号不是国盛通信团队研究报告的发布平台。本订阅号所载的信息仅面向专业投资机构,仅供在新媒体背景下研究观点的及时交流。本订阅号所载的信息均摘编自国盛证券研究所已经发布的研究报告或者系对已发布报告的后续解读,若因对报告的摘编而产生歧义,应以报告发布当日的完整内容为准。本资料仅代表报告发布当日的判断,相关的分析意见及推测可在不发出通知的情形下做出更改,读者参考时还须及时跟踪后续最新的研究进展。
本资料不构成对具体证券在具体价位、具体时点、具体市场表现的判断或投资建议,不能够等同于指导具体投资的操作性意见,普通的个人投资者若使用本资料,有可能会因缺乏解读服务而对报告中的关键假设、评级、目标价等内容产生理解上的歧义,进而造成投资损失。因此个人投资者还须寻求专业投资顾问的指导。本资料仅供参考之用,接收人不应单纯依靠本资料的信息而取代自身的独立判断,应自主作出投资决策并自行承担投资风险。
版权所有,未经许可禁止转载或传播。

东港股份
嘉楠科技
公链2020H1
漫画区块链
比特币UTXO
比特币挖矿初探
比特币挖矿产业链
比特币与黄金相关性
DCEP专利分析
DCEP双离线支付
DCEP标的
Libra
区块链+电子发票
区块链+溯源
区块链+供应链金融
区块链标准委标的

韩锋
唯链
帅初-Qtum
段新星-OKCoin
孙鸣-法律专家
张原-比特大陆
咕噜
白硕-上交所前总工
余文波-分布式资本
张元杰-Conflux
吕国宁-Nervos
郑义-Qtum
孟岩-CSDN
陈雷-比特蓝鲸
周沙-区块链早期参与者
俞阳-矿海会

【国盛区块链系列之元宇宙】


2021.6.28 国盛区块链独家带你——在“元宇宙”中看元宇宙


2021.7.16  国盛区块链:中国版Roblox上线,元宇宙UGC生态迎来新发展


2021.8.2  国盛区块链:元宇宙之二:算力重构,通向Metaverse的阶梯


2021.8.5  国盛区块链:元宇宙是“方块”搭成的?


2021.8.30 国盛区块链:元宇宙(四):GameFi赛道崛起,元宇宙踏上破圈征程


2021.10.12 国盛区块链:元宇宙(五) : NFT商业落地中的思考


2021.12.21 国盛区块链:虚拟人的“灵魂”是什么?


【国盛区块链系列之数字货币】


2019.9.24 国盛区块链:初探中国央行数字货币:目标、定位、机制与影响


2019.10.9 国盛区块链 | 再探央行数字货币:对电子支付产业有何影响?


2019.11.15 国盛区块链:数字货币的双离线支付是什么?


2020.4.8 国盛区块链专题:三探央行数字货币:透过专利看“超级货币”蓝图


2020.4.17 国盛区块链:一图看懂央行数字货币相关标的


2020.6.24 国盛区块链:四探央行数字货币:第三方支付产业新变量


2020.7.9 国盛区块链:五探数字货币:NFC+SIM卡打造DCEP安全支付环境


2020.9.22 国盛区块链:六探央行数字货币:他山之石,枕戈待旦


2021.3.9  国盛区块链:大行发力DCEP,数字人民币渐行渐近


2021.4.20 盛区块链:数字人民币测试加速,应用场景不断丰富


2021.4.19  盛区块链:数字人民币与加密货币分而治之,公测在即


2021.5.7 盛区块链:不可或缺的数字货币


2021.7.18 盛区块链:数字货币再加速,大国竞争新赛道


2021.9.8 盛区块链:数字人民币产业链初现,亮相服贸会


2021.11.9 国盛区块链:币兑换机亮相进博会,数字人民币国际化提速


2022.1.5  国盛区块链: 数字人民币App上线,新电子支付体系显露真容


【国盛区块链系列之DeFi】


2021.1.25 国盛区块链:DEFI生态、以太坊2.0:锁仓推动eth价格持续新高


2021.2.1 国盛区块链:链上费用Top10 DeFi占八席、以太坊扩容和二层网络值得期待


2021.4.22 国盛区块链·深度:DeFi新金融(一):构筑加密世界开放金融新生态


2021.4.24 国盛区块链·深度:DeFi新金融(二):超额抵押与资产映射


2021.5.12 国盛区块链·深度:DeFi新金融(三):DeFi高收益从何而来?


2021.6.16 国盛区块链·深度:DeFi新金融(四):暴跌下的压力测试,DeFi韧性如何?


2021.8.1 国盛区块链·深度:DeFi新金融(五):稳定币的昨天、今天和明天


2021.9.18 国盛区块链:掉进兔子洞——DeFi的诱人承诺与风险


【国盛区块链系列之NFT】


2021.3.15 国盛区块链|频频“出圈”的NFT:链接真实世界的入口


2021.4.11 国盛区块链·深度:NFT:数字资产化桥梁,进化才刚刚开始


2021.8.31 盛区块链: 互联网巨头入局元宇宙,NFT收藏品市场持续升温


2021.9.7  OpenSea——全球最大NFT交易平台的创新与破圈


2021.9.9 国盛区块链:何为NFT?价值何来?


【国盛区块链系列之上市公司】


2019.3.4 国盛区块链:Facebook计划发行加密货币、新加坡政府投资公司参与Coinbase融资


2019.11.24 国盛通信宋嘉吉:嘉楠科技深度:全球矿机第一股,产业延伸看 AI


2020.2.15 国盛区块链&轻工:东港股份深度:龙头转型,区块链业务锋芒渐露


2020.3.3 国盛区块链&轻工: 东港股份002117:北京试点区块链电子发票,公司步入快车道


2020.4.14 国盛区块链&轻工:东港股份002117:主业平稳,区块链业务驶入快车道


2021.1.11 国盛区块链:矿场股和矿机股有何不同?


2021.2.8 国盛区块链:比特币价格高企,中嘉博创布局算力运营产业链


2021.2.23 国盛区块链·深度:全球比特币挖矿股全景解析


2021.3.16 国盛区块链·深度:Coinbase上市:里程碑与新起点


2021.3.22 国盛区块链:香港首家持牌数字资产交易所上线,Coinbase推迟至下月上市


2021.4.2 国盛区块链:聚光灯下的Coinbase


2021.4.17 国盛区块链:嘉楠科技(CAN):比特币看多期权,业绩有望延后爆发


2021.8.11 国盛区块链:Coinbase月活增速亮眼,以太坊交易量首超比特币


【国盛区块链系列之周观点】


2020.12.21 国盛区块链:数字黄金渐行渐近,比特币会成为全球储备资产吗


2020.12.28 国盛区块链:比特币新高下,挖矿行业怎么看?


2021.1.4 国盛区块链:比特币价格上限在哪里?


2021.1.18 国盛区块链:跨链生态引领币市热点,灰度下架XRP信托产品


2021.2.22 国盛区块链:比特币持续新高,概念股惊艳资本市场


2021.2.16 国盛区块链|特斯拉购入比特币,数字黄金再“出圈”


2021.3.1 国盛区块链:以太坊1559提案:矿工、持币人和社区利益的再平衡


2021.3.8 国盛区块链:火币科技虚拟资产基金登陆香港,行业加速合规化


2021.3.22 国盛区块链:香港首家持牌数字资产交易所上线,Coinbase推迟至下月上市


2021.4.5 国盛区块链:VISA将支持加密货币结算,crypto加速渗透传统金融


2021.4.17 国盛区块链:嘉楠科技(CAN):比特币看多期权,业绩有望延后爆发


2021.4.20 国盛区块链:数字人民币测试加速,应用场景不断丰富


2021.4.21  国盛区块链:Chia新模式催化,硬盘存储设备供不应求


2021.4.26 国盛区块链:Chia下周开启交易,挖矿新模式迎来市场首秀


2021.6.1 国盛区块链:加密货币挖矿监管趋严,BSC安全事件频发


2021.6.15 国盛区块链:中国数据安全法出台,隐私计算推动数据要素市场化


2021.6.29 国盛区块链:密货币监管持续收紧,蚂蚁链NFT迎来首秀


2021.8.10 国盛区块链:太坊1559提案正式实施,代币销毁效果显著


2021.8.31 国盛区块链: 互联网巨头入局元宇宙,NFT收藏品市场持续升温


2021.9.7 国盛区块链:OpenSea——全球最大NFT交易平台的创新与破圈


2021.9.21 国盛区块链:Loot异军突起,虚拟经济的新尝试


2021.10.24 国盛区块链: 从比特币期货ETF获批,看全球区块链产业变迁


2021.10.25 国盛区块链:Facebook计划更名,加速构建元宇宙版图


【国盛区块链系列之其他】


2021.5.1  国盛区块链|2021掘金丰水期——融合、出圈与合规


2021.4.29 国盛区块链·深度:迭代与竞争——以太坊的Layer2扩容之路


2021.4.16 国盛区块链:美联储全景解读DeFi的颠覆力量


2021.1.24 国盛区块链:区块链新基建(四):中欧投资协定背景下,隐私计算开启新蓝海


(向下滑动,查看更多)


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/156622
 
137 次点击