社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Git

Github2.5k星,Karpathy转赞,「流程工程」让LLM代码能力瞬间翻倍,直接淘汰提示工程

新智元 • 2 月前 • 133 次点击  



  新智元报道  

编辑:润
【新智元导读】Karpathy力推代码生成任务增强流程,让GPT-4在CodeContests从19%提升到44%,不用微调不用新数据集训练,让大模型代码能力大幅提升。

代码生成可以说是大模型应用中效果最好,使用人群最广的一项任务了。

但是由于编程语言众多,要应对各种不同的边缘场景,代码生成任务又是对模型能力要求最高的任务,一般的自然语言提示,甚至是CoT等方法,对于代码生成任务来说,效果也不是很好。

但是最近在GitHub上有一个项目大火,它通过一系列针对大模型代码生成任务的优化,将提示词工程升级为一个更加复杂的「流程工程」,能够大幅提升模型输出的代码质量。

项目地址:https://github.com/Codium-ai/AlphaCodium

就连AK看了,都很兴奋地转发,认为如果代码生成任务能够以更科学的流程,而不是简单的问答方式来和大语言模型互动的话,性能确实还有不少提升的空间。

作者把这个项目称为AlphaCodium ,一种基于测试的、多阶段、面向代码的迭代流程。

他们在由谷歌DeepMind提出的一个非常有难度的代码测试集CodeContests上进行测试,将GPT-4的成绩从19%提高到了44%。

由于CodeContests代码生成问题的复杂性,简单的提示优化,甚至CoT提示,无法获得有意义的性能提高。

最主要是因为就算强如GPT-4,也难以理解和「消化」问题,会不断产生错误的代码。

适用于自然语言任务的通用流程可能不适用于像CodeContests上这种有难度代码生成任务。

CodeContests数据集

CodeContests是Google Deepmind推出的一个具有挑战性的代码生成数据集,其中包括了很多像Codeforces等竞赛性编程平台编写的问题。

这个数据集包含约一万个可用于训练LLM的问题,以及用于评估LLM解决具有挑战性的代码生成问题的能力的验证和测试集。

作者没有训练专用模型,而是开发了一个面向代码的流程,这个流程可以应用于任何能够用于编码任务的预训练的LLM,例如GPT或DeepSeek。

下图展示了一个 CodeContests 数据集中的典型问题示例:

为什么CodeContests是一个评估代码生成任务的LLM的优秀数据集?

主要原因是:

1)CodeContests与许多其他竞争性编程数据集不同,它利用一套全面的不公开的测试来避免错误检测——每个问题包含约200个生成的代码解决方案,输出和输入都要通过这个测试。

2)LLM通常不擅长关注小细节,因为他们通常会将问题描述转换为某种「平均」描述,接近于模型接受训练时的常见案例。

另一方面,现实世界的问题经常包含正确解决问题内容中至关重要的小细节。

CodeContests 数据集的一个关键特征是,问题描述在设计上是复杂而冗长的,并且存在一些小细节和细微差别(参见上图中的典型问题描述)。

作者认为增加这种问题理解的自由度是有益的,因为它能真实模拟现实生活中的问题,这些问题通常很复杂,涉及多种因素和考虑因素。

这与更常见的代码数据集(例如 HumanEval)形成对比。

作者认为适当的自我反思会使问题更加清晰、更加连贯。这说明了问题理解作为流程的一部分的重要性,它很可能导致正确的代码解决方案。

为了应对这种和现实问题很接近的测试集,作者提出了这样一个流程:

该流程主要是一个迭代过程,作者根据输入输出测试反复运行和修正生成的代码。

这种以代码为导向的流程有两个关键要素:

  • 预处理阶段是一个线性流程,用自然语言对问题进行推理。在预处理阶段生成额外的数据,如自我反省和公共测试推理,以帮助迭代过程;

  • 代码迭代阶段包括根据特定测试生成、运行和修复代码的迭代阶段。这个阶段使用人工智能生成的额外测试来丰富公共测试。


面向代码的设计理念

AlphaCodium 流程广泛使用了以下设计概念:

YAML 结构化输出

结构化输出的使用——要求模型生成 YAML 格式的输出,相当于给定的 Pydantic 类——是我们提出的流程中的关键组件。此类指令的示例:

...Your goal is to present possible solutions to the problem.Make sure that each solution fully addresses the problem goals, rules, and constraints.

The output must be a YAML object equivalent to type $PossibleSolutions, according to the following Pydantic definitions:
class Solution(BaseModel): name: str = Field(description="The name of the solution") content: str = Field(description="A description of the solution") why_it_works: str = Field(description="Why this solution is correct. Be specific and detailed regarding the problem rules and goals") complexity: str = Field(description="The complexity of the solution")
class PossibleSolutions(BaseModel): possible_solutions: List[Solution] = Field(max_items=3, description="A list of possible solutions to the problem. Make sure each solution fully addresses the problem rules and goals, and has a reasonable runtime - less than three seconds on a modern computer, given the problem constraints for large inputs.")
结构化输出消除了「提示工程」所需的大部分麻烦和黑暗知识,而是允许以简单的、类似代码的方式呈现复杂的任务。它还使得获得涉及多个阶段的复杂答案成为可能,代表逻辑和有条理的思维过程。

要点分析

当要求 LLM 推理问题时,要求输出采用要点格式通常会获得更好的结果。

要点鼓励对问题的深入理解,并迫使模型将输出划分为逻辑语义部分,从而改进结果。
例如,通过对问题的要点进行自我反思(见上图),每个要点代表对问题不同部分的语义理解——一般描述、目标和规则、输入结构和输出结构。

LLM在生成模块化代码时做得更好

当要求 LLM生成单个冗长函数时,结果往往很差 - 代码通常包含错误或逻辑错误。

更糟糕的是,单个整体代码损害了执行迭代修复的能力——即使给出了错误消息,模型也难以查明和修复问题。

具有双重验证的软决策

LLM往往会在需要思考、推理并做出严格、重要决策的代码任务中遇到困难。

以针对问题生成附加测试的任务为例。很多时候,模型生成的一些测试是完全错误的。
通过双重验证过程,作者添加了一个额外的步骤,在给定生成的输出的情况下,要求模型重新生成相同的输出,但在需要时进行更正。
例如,将生成的 AI 测试作为输入,要求模型重新生成相同的测试,同时纠正错误的输出(如果存在)。我们发现,双重验证的这一步骤在鼓励模型批判性和推理性的同时,比直接问「是/否」问题更有效:「这个测试正确吗?」

推迟决策,尽量避免直接提问,并留出探索的空间

向模型提出有关复杂问题的直接问题时,我们总是会看到幻觉和错误答案。

采用逐步数据积累的流程,从简单的任务到困难的任务:
从最简单的任务开始 – 对问题的自我反思,并对公共测试进行推理。
开始生成额外的人工智能测试以及问题的可能解决方案。
只有在获得模型对上述任务的答案后,我们才会开始实际的代码生成和运行修复迭代。

测试锚点

即使经过双重验证,一些人工智能生成的测试也会是错误的。

这使得迭代变得具有挑战性——当测试失败时,我们如何知道是因为代码错误,还是因为测试错误?
当我们直接询问模型「谁错了」时,经常会看到幻觉,并可能最终得到错误修复的代码。
为了解决这个问题,作者使用了「测试锚点」技术:
– 首先迭代公共测试,我们知道这是正确的。完成后,将所有通过的测试设置为锚定测试。
– 然后,一项一项地迭代人工智能生成的测试。如果测试通过,则将其添加到测试锚点列表中
-如果测试失败,假设是因为代码不正确,并尝试修复代码。
然而,要求固定代码也通过已经获得的所有测试锚点。因此,测试锚点将保护输出免受错误固定代码的影响。
测试锚点的另一个优化是将人工智能生成的测试从易到难进行排序。这样,迭代过程就有更多机会在过程开始时获得锚点,这可以在以后迭代更复杂的人工智能测试时用作保护,因为错误测试输出的可能性更高。

结果

直接使用提示词 Vs AlphaCodium

将 AlphaCodium 结果与通过单个精心设计的直接提示获得的结果进行了比较。
可以看出,AlphaCodium流程一致且显著提高了LLM在CodeContests问题上的性能。
对于开源 (DeepSeek) 和闭源 (GPT) 模型以及验证集和测试集都是如此。
参考资料:
https://www.codium.ai/blog/alphacodium-state-of-the-art-code-generation-for-code-contests/



Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/166923
 
133 次点击