本文主要对推荐系统算法模型进行全面梳理,并整理成四张卡片,非常适合快速复习回顾。推荐系统概况:传统CTR、深度学习CTR、Graph Embedding、多任务学习。对比内容包括:算法思想、优缺点、网络结构、公式、代码实现等方面。涵盖:协同过滤、矩阵分解、LR、FM、FFM、GBDT+LR、XGBoost+LR
涵盖:NeuralCF、Deep Crossing、FNN、PNN、Wide&Deep、Deep&Cross、DeepFM、AFM、DIN、DIEN、DLRM
涵盖:Word2Vec、Item2Vec、DeepWalk、Node2Vec、EGES

[1] Rendle, Steffen. "Factorization Machines." 2011.
[2] Mcartney, D . "Proceedings of the Eighth International Workshop on Data Mining for Online Advertising."Eighth International Workshop on Data Mining for Online AdvertisingACM, 2014.
[3] Zhang, Weinan , T. Du , and J. Wang . "Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction." (2016).
[4] Product-base Neural Networks for user responses
[5] Xiangnan He, and Tat-Seng Chua. "Neural Factorization Machines for Sparse Predictive Analytics."the 40th International ACM SIGIR ConferenceACM, 2017.
[6] Yang, Yi.et. "Operation-aware Neural Networks for User Response Prediction.".
[7] Juan, Yuchin, Lefortier, Damien, and Chapelle, Olivier. "Field-aware Factorization Machines in a Real-world Online Advertising System.".
[8] Xiao, Jun, Ye, Hao, He, Xiangnan, Zhang, Hanwang, Wu, Fei, & Chua, Tat-Seng. . Attentional factorization machines: learning the weight of feature interactions via attention networks.
[9] Cheng, Heng Tze , et al. "Wide & Deep Learning for Recommender Systems." (2016).
[10] Guo, Huifeng, Tang, Ruiming, Ye, Yunming, Li, Zhenguo, & He, Xiuqiang. . Deepfm: a factorization-machine based neural network for ctr prediction.
[11] Wang, Ruoxi, Fu, Bin, Fu, Gang, & Wang, Mingliang. . Deep & cross network for ad click predictions.
[12] Lian, Jianxun, Zhou, Xiaohuan, Zhang, Fuzheng, Chen, Zhongxia, Xie, Xing, & Sun, Guangzhong. . Xdeepfm: combining explicit and implicit feature interactions for recommender systems.
[13] Song, Weiping, Shi, Chence, Xiao, Zhiping, Duan, Zhijian, Xu, Yewen, & Zhang, Ming et. . Autoint: automatic feature interaction learning via self-attentive neural networks.
关注我们并在后台回复【推荐系统】

