社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

PyTorch 深度学习入门Fast.ai 2.0上线!自带中文字幕,所有笔记、资源全部免费!

磐创AI • 4 年前 • 634 次点击  




  磐创AI分享  

来源 | 量子位(QbitAI)

编辑 | 贾浩楠、发自、凹非寺


Fast.ai,最受人们欢迎的MOOC课程和深度学习框架之一。

重代码而非数学,这让不少使用Fast.ai的初学者称霸各种Kaggle比赛

昨天,最新的Fast.ai 2.0版本上线

新版本完全对Fast.ai V1进行了重置,构建了全新的深度学习框架。更轻快、更灵活、更容易使用。

而且,对中国用户最友好的是,全部课程视频都有简体中文字幕

2.0更新了哪些课程

新上线的Fast.ai 2.0是测试版,目前公开的课程分为两大部分:深度学习任务速成,和更加细致全面的深度学习基础

其中,速成部分有7节课,分别是:

图像分类
SGD入门
多标签
NLP
反向传播:从零开始的神经网络
CNN
GAN

如果你已经有了一定的基础,那么可以直接开始第二部分课程度学习基础

这一部分包含7课,从深度神经网络的基础结构讲起,包括神经网络的训练过程、模型内部结构、数据块的API等等。

在Fast.ai官网上,每一节课的页面,左边是视频播放,右边有本节提纲,和其他网友详细的学习笔记链接。此外还有各种丰富的扩展资料。

可以说,团队是十分用心了。

但是,如果你没有任何机器学习的基础知识储备,那么要注意一点:

V2版本中移除了V1中的机器学习入门,需要这些课程的用户只能出门左转使用V1.。

但团队承诺,仍然会对V1进行更新维护。

安装使用教程

Fast.ai除了提供免费的课程,更主要的是作为一个高度简化集成的深度学习框架,为初学者提供了简单易上手的深度学习任务工具,比如CV分割工具。

安装最新的Fast.ai也十分简单,只要通过一行代码:

pip install fastai

如果你用的是conda,那么用这个指令来安装:

conda install -c fastai -c pytorch fastai

如果你想自己进一步修改开发Fast.ai,那么需要安装可编辑的版本:




    
git clone —recurse-submodules https://github.com/fastai/fastaipip install -e “fastai[dev]”

当然,所有的安装都要求电脑预装最新版本的Python和PyTorch

最后,还有一个完全不用安装的使用方法,谷歌Colab,加载完成后记得选择GPU模式运行。

V2特色:三大核心库

这一次Fast.ai的更新,核心功能是3个库:fastcorefastscriptfastgpu

fastcore

其中,fastcore利用Python的灵活性,添加了其他语言的一些优秀特性。

比如来自Julia的多重调度,来自Ruby的mixin,以及来自Haskell的currying、binding。

它还增加了Python中一些 “缺失的特性”,并清理了Python标准库中一些不太好用的部分,比如简化并行处理。

fastscript

fastscript专门为快速设计脚本而设。在 Python中,可以使用自带的argparse来实现但它很复杂,尤其是当你想支持命令行参数、提供帮助和其他细节。

而Fastscript是一个完整的、可以使用的命令行应用程序。运行调用也十分简单:

from fastscript import *@call_parsedef main(msg:Param(“The message”, str),        upper:Param(“Convert to uppercase?”, bool_arg)=False):   print(msg.upper() if upper else msg)

运行之后可以得到:

$ python examples/test_fastscript.pyusage: test_fastscript.py [-h] [—upper UPPER] msgtest_fastscript.py: error: the following arguments are required: msg

fastgpu

fastgpu库只提供了一个命令fastgpu_poll,它可以轮询一个目录来检查是否有脚本要运行,然后在第一个可用的 GPU 上运行它们。

如果没有可用的GPU,fastgpu进入等待状态。如果有一个以上的GPU可用,则多个脚本将并行运行,每个GPU运行一个。

这是最简单的运行模型简化测试的方法,它可以利用所有的GPU,没有并行处理的成本,也不需要人工干预。

Fast.ai新书同步上线

除了刚才介绍的3个核心库,Fast.ai2.0还有很多使用技巧。

开发团队推荐使用Fast.ai2.0的配套书籍《程序员实用深度学习教程》来学习。

现在亚马逊可买实体书,JupyterNotebook也可以免费阅读。

面向0基础初学者、所有资源免费、中文字幕、官方整理详细笔记、还可以白嫖谷歌Colab,这么优质的学习资源,你还在犹豫什么呢?

传送门

课程介绍
https://www.fast.ai/2020/08/21/fastai2-launch/

教学视频
https://course19.fast.ai/index.html

亚马逊链接

https://www.amazon.com/Deep-Learning-Coders-fastai-PyTorch/dp/1492045527


扫码看好书,满100减50超值优惠活动等你哦

✄------------------------------------------------

看到这里,说明你喜欢这篇文章,请点击「在看」或顺手「转发」「点赞」。

欢迎微信搜索「panchuangxx」,添加小编磐小小仙微信,每日朋友圈更新一篇高质量推文(无广告),为您提供更多精彩内容。


▼     扫描二维码添加小编  ▼  ▼  

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/73424
 
634 次点击