社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

Python 进阶视频课 - 5. SciPy 上

王的机器 • 4 年前 • 568 次点击  

这是 Python 进阶课的第五节 - SciPy 上,进阶课的目录如下:


  1. NumPy 上

  2. NumPy 下

  3. Pandas 上

  4. Pandas 下


之前基础版的 11 节的目录如下:


  1. 编程概览

  2. 元素型数据

  3. 容器型数据

  4. 流程控制:条件-循环-异常处理

  5. 函数上:低阶函数

  6. 函数下:高阶函数

  7. 类和对象:封装-继承-多态-组合

  8. 字符串专场:格式化和正则化

  9. 解析表达式:简约也简单

  10. 生成器和迭代器:简约不简单

  11. 装饰器:高端不简单



学习任何东西 (这回以 SciPy 举例) 先来谈谈我的学习思路,主干线是 WHY-WHAT-HOW,看这种思路是不是符合你的胃口:


WHY


NumPy 是数据结构,而 SciPy 是基于该数据结构的科学工具包,能够处理插值积分优化、常 (偏) 微分方程数值求解信号处理图像处理等问题。


此外,原来 SciPy 底下的子工具包 scipy.stats.models 也独立成为 statsmodels 包,它提供了一套完整回归体系,具体操作包括数据访问方式,拟合,绘图和报告诊断。



WHAT / HOW


既然 SciPy 偏向功能,我就从金融方向用到最多的几个功能来介绍 SciPy:


  • 插值:scipy.interpolate

  • 积分:scipy.integrate

  • 优化:scipy.optimize

  • PDE:scipy.sparse

  • 回归:statsmodels.api


对于以上每种功能,我的想法是先用一个简单例子来介绍如何去用子工具包,再用一个金融例子来巩固学到的东西。


  • 插值:计算远期利率

  • 积分:计算期权价值

  • 优化:最大化效用

  • PDE:有限差分 - 完全显式、完全隐式和克莱克尼克尔森

  • 回归:CAPM, FF 3 因子, FF 5 因子


总体内容用思维导图来表示。





付费用户(付 1 赠 1)可以获得:


  • 观看课程视频 (80 分钟)

  • Python 代码 (Jupyter Notebook)




Jupyter Notebook

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/99608
 
568 次点击