社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

汇总 | OpenCV4中的非典型深度学习模型

小白学视觉 • 4 年前 • 329 次点击  

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自|OpenCV学堂

 引言 ·


前面给大家分别汇总了OpenCV中支持的图像分类与对象检测模型,视觉视觉任务除了分类与检测还有很多其他任务,这里我们就来OpenCV中支持的非分类与检测的视觉模型汇总一下。注意一点,汇总支持的模型都是OpenCV4.4 Github上已经提供的,事实上除了官方的提供的模型,读者还可以自己探索更多非官方模型支持。这里的汇总模型主要来自OpenCV社区官方测试过的。

语义分割网络

OpenCV4 DNN支持的语义分割网络FCN与ENet、ResNet101_DUC_HDC等三个语义分割模型。

FCN

其中FCN主要是基于VGG16~VGG19作为基础网络,速度很慢,该网络是在2015年时候提出,是早期很典型的图像语义分割网络,不是一个对称的卷积反卷积分割网络,在编码阶段网络过长,解码网络很少,结果堪忧!网络结构如下:

分别支持不同分辨率的上采样。

论文下载地址:

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf

ENet

ENet是一种实时语义分割网络,在2016年提出的,关于ENet语义分割网络,我其实之前写过一篇文章,详细介绍过,这里就不再啰嗦了,直接看这个链接即可:

详解ENet | CPU可以实时的道路分割网络


论文下载地址:

https://arxiv.org/pdf/1606.02147.pdf


ResNet101_DUC_HDC

该模型在编码网络中基于残差网络与混合空洞卷积(HDC-Hybrid Dilated Convolution),在解码阶段采用密集上采样卷积(DUC-Dense Upsampling Convolution),最终实现了像素级别的图像语义分割网络。网络模型结构如下:

该论文在2017发表,论文地址如下:

https://arxiv.org/pdf/1702.08502.pdf

姿态评估

OpenCV DNN支持的姿态评估是基于OpenPose网络实现的身体与手部姿态评估,OpenPose是一个开源的姿态评估项目支持2D与3D模型的姿态评估,提供了C++/Python的API调用接口。模型可以从它github地址获得

https://github.com/CMU-Perceptual-Computing-Lab/openpose

相关的模型主要来自它们的系列论文, 姿态评估的基本原理与流程如下:

完整的姿态评估流程入上图,首先预测热图与PAF,然后进行匹配与解析,最终得到输出的姿态评估结果。相关的论文地址如下

https://arxiv.org/pdf/1812.08008v2.pdfhttps://arxiv.org/pdf/1611.08050.pdf

图像处理

OpenCV中图像处理网络支持图像色彩迁移、图像风格迁移、边缘检测。

色彩迁移:

其中灰度图像转换彩色图像的模型结构如下:

其中有个重要的输入特征点是要把RGB彩色图像转换为LAB通道图像,然后对AB输入,最后结果重新加上L分量。代码在这里

http://richzhang.github.io/colorization/

风格迁移

风格迁移网络主要是来自于2016李飞飞等提出感知损失的图像风格迁移与超分辨率论文实现的,网络结构如下:

github地址如下:

https://github.com/jcjohnson/fast-neural-style


边缘检测

OpenCV中传统的图像边缘检测算法是Canny,现在OpenCV支持基于深度学习的边缘检测算法HED,它与Canny算法的边缘提取效果对比如下:

该论文是在2015年提出的,模型结构如下:

作者选择了VGGNet作为特征提取与基础网络。


论文地址:

https://arxiv.org/pdf/1504.06375.pdf

人脸识别

人脸识别来自OpenFace,OpenFace是一种典型的移动端实时的人脸识别模型,跟它相似的还有LightCNN模型。OpenFace是基于facenet的Inception网络作为backbone网络训练生存的torch网络模型,然后基于SVM实现了分类推理,完整的OpenFace项目结构如下:

其中预处理阶段的人脸对齐示意图如下:

关于FaceNet的人脸识别论文

https://arxiv.org/pdf/1503.03832.pdf


OpenCV DNN支持的8位的量化之后的人脸识别模型,最终输出的向量是128维的,模型下载可以从Github地址:

https://github.com/cmusatyalab/openface

场景文字检测

场景文字检测来自2017年旷视科技提出的EAST场景文字检测模型,相关的模型结构如下:


最终输出的文本区域解析后处理如下:

最常见的是解析位RBOX,即带角度的旋转矩形(最小外接矩形)。


论文地址如下:

https://arxiv.org/pdf/1704.03155.pdf

最后总结一下,上述网络均支持在OpenCV4.4版本上直接推理运行,或者自定义数据学习之后的在OpenCV4 DNN部署,推理调用。



下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告 ,否则会请出群,谢谢理解~


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/112202
 
329 次点击