社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

开发人员亲自上场:Julia语言搞机器学习和Python 比,哪个好用?

OpenCV学堂 • 3 年前 • 492 次点击  

点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 机器之心 授权


2022 年,你会选择哪种编程语言呢?
前几年就流传着这样一种说法:Julia 会替代 Python,成为新的最受欢迎的编程语言之一。我们暂且对这种说法持观望态度,但作为科学计算方面的强大工具,Julia 优势已然显现,这意味着程序员的选择又多了一种。

在数据科学、人工智能等领域,仔细对比 Julia 和 Python,我们会发现:相同的任务,只要 Python 能实现的的,Julia 都可以做,而且效率高得多,语法也简洁优雅,只是在传播度上,名气还不如 Python。

近日,reddit 上的一则热帖引来广大网友的讨论,这个帖子提到,最近,一些 Julia 语言包的开发人员讨论了 Julia 中 ML 的当前状态,并将其状态与 Python ML 生态系统进行了比较。


原贴地址:
https://www.reddit.com/r/MachineLearning/comments/s1zj44/r_julia_developers_discuss_the_current_state_of/

来自乌得勒支大学的 JordiBolibar 认为,「 Julia 确实在机器学习方面拥有巨大的潜力,但它目前的状态有点喜忧参半。更具体地说,我在 SciML 中坚持使用 Julia 的主要原因是,DifferentialEquations.jl 库工作得非常好,但在 Python 中没有发现任何类似的东西。然而,对于我的研究来说,真正痛苦的是 AD 部分。自从我开始使用 Julia ,我在 Zygote 中遇到了两个错误,这使我的工作速度减慢了几个月。但我仍然认为 Julia 是 SciML 的最佳选择,但这些库(及其文档)应该优化的更加用户友好。」


网友 @jgreener64 表示:「Julia 中的 ML 在某些领域应用非常强大,Julia 一切皆有可能。Julia 面临的问题是:Julia 中的 ML 需要大量现有知识或大量时间搜索 / 反复试验。在个人层面上,我目前正在用 Julia 开发新颖的可微分算法。」


除了网友的热烈讨论外,Julia 软件包开发人员 Christopher Rackauckas 围绕以下 7 个问题,解答了网友比较关心的内容。Rackauckas 是 MIT 和马里兰大学的数学家和药理学家,主要用 Julia 进行编程。Rackauckas 为 Julia、数学和随机生物学开了专门博客,来介绍相关内容,并且 Rackauckas 在 Julia 中开发了一些库,包括(但不限于)DifferentialEquations.jl 和 Pumas。

Christopher Rackauckas

问题包括:

  1. 今天 Julia 中的 ML 在哪些地方真正大放异彩?在不久的将来该生态系统在哪些方面优于其他流行的 ML 框架(例如 PyTorch、Flax 等),为什么?

  2. 目前 Julia 的 ML 生态系统在功能或性能方面存在哪些缺点?Julia 在这些领域变得具有竞争力的时间节点在哪?

  3. Julia 的标准 ML 包(例如深度学习) 在性能方面与流行的替代方案相比如何(更快、更慢、相同数量级)?

  4. 有没有重要的 Julia 实验,可以针对流行的 ML 替代方案进行基准测试?

  5. 如果一家公司或机构正在考虑创建职位来为 Julia 的 ML 生态系统做出贡献,有没有最佳案例?为什么他们应该这样做?哪些贡献最有影响力?

  6. 为什么与其他框架合作的独立开发人员应该考虑为 Julia 的 ML 生态系统做出贡献?

  7. 对于某些特定任务,Julia 开发人员倾向于使用哪些软件包?Julia 开发人员希望添加目前不存在的哪些内容?


下文中我们挑选了几个大家比较关心的问题进行报道:

问题 3:Julia 在「标准 ML」中的表现如何?

Julia 的内核速度很好:在 CPU 上,我们做得非常好,在 GPU 上,每个人都只是调用相同的 cudnn 等;Julia 的 AD 速度也很好。不过 Zygote 可能会有一些开销,但与 Jax/PyTorch/TensorFlow 相比,Zygote 在大多数情况下速度是很快的。具体来说,PyTorch 开销要高得多,在标准 ML 工作流程中甚至无法测量。一个足够大的矩阵乘法会解决分配问题或其他 O(n) 问题;Julia 不融合内核,因此在大多数基准测试中,如果用户查看它,就会发现它没有融合 conv 或 RNN cudnn 调用。

问题 4:我们应该跟踪哪些重要的实验和基准?

XLA 的分布式调度器非常好。当我们考虑扩展时,我们应该忽略 PyTorch,去考虑 DaggerFlux 与 TensorFlow/Jax。XLA 有更多的灵活性来改变操作,所以我认为 XLA 才是赢家,我们需要使用 e-graphs 技巧来匹配它。另一件需要注意的事情就是「自动微分中缺少中间部分」,这种情况还需要解决。

问题 7:有什么推荐的软件包?

我倾向于在需要时使用 Flux,但大家还是尽量使用 DiffEqFlux。就现有内核而言,Flux 是最完整的,但它的风格让我感到厌烦。我希望有一个 Flux 不使用隐式参数,而是使用显式参数。我希望这些参数由 ComponentArrays 表示。

更多内容请参考:https://discourse.julialang.org/t/state-of-machine-learning-in-julia/74385
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/126214
 
492 次点击