社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

资源|深度学习注意力机制TensorFlow 使用教程

小白学视觉 • 3 年前 • 284 次点击  


点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

【导读】本资源介绍了以下3个方面:1)如何在图像上应用CNN attention。2)神经机器翻译中的注意机制。3)在图像配图中应用attention和双随机正则化。


No.1

总体目录



No.2

Attention maps


      在这节课中,我们学习深度学习模型注意图像的哪些部分。根据我们在网络中的深度,我们可以学习不同层次的注意力图。


No.3

Attention in image captioning


      传统的图像字幕模型体系结构存在瓶颈问题。通常,我们使用一个预先训练的模型来提取固定的特征,这些特征被直接提供给一个RNN模型来生成标题。然而,随着时间的推移,这种表现会影响字幕的效果,因为我们把图像看作一个整体,而不是局部。注意力背后的基本思想是迫使模型为图像的不同部分分配权重,这使得字幕处理更加有效。

地址连接:

https://github.com/zaidalyafeai/AttentioNN


下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/129541
 
284 次点击