社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

图机器学习与分子分析,NUS- Xavier Bresson教授讲解,附视频与Slides

深度学习与图网络 • 2 年前 • 205 次点击  

以下内容转自专知微信公众号

图神经网络(GNN)在图表示学习领域显示出了巨大的潜力。标准gnn定义了一种本地消息传递机制,通过堆叠多个层在整个图域传播信息。这种范式有两个主要限制,过度压缩和较差的长程依赖性,可以使用全局注意力来解决,但会显著增加二次复杂度的计算成本。本文提出一种替代方法,通过利用计算机视觉中引入的ViT/MLP-Mixer架构来克服这些结构限制。本文提出一类新的GNN,称为Graph MLP-Mixer,具有三个关键属性。首先,它们捕获了长程依赖关系,如长程LRGB数据集上所示,并缓解了treenneighbors数据集上的过度压缩问题。其次,它们提供了内存和速度效率,超过了相关技术。第三,它们在图同构方面表现出了较高的表达能力,可以区分至少3-WL的同构图。因此,这种新架构为分子数据集提供了比标准消息传递GNN更好的结果。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/152872
 
205 次点击