点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达


人脸识别正在成为软件开发中的一种趋势。它有助于识别人脸并使应用程序更加健壮。在本教程中,我们将使用python
和face_recognition
库创建一个简单的人脸识别。对于开发环境,我们将使用 Visual Studio Community Edition。如果你的计算机上还没有安装它,你可以从这里下载:https://visualstudio.microsoft.com/downloads/。并使用 C++安装桌面开发。现在我们有了使用 C++ 进行桌面开发的 Visual Studio,我们可以开始我们的项目了。使用 Visual Studio 打开一个新目录并创建一个新的 python 环境。我们将使用venv
. 打开你的集成终端并编写python -m venv venv
。然后通过键入venv/bin/Activate.ps1
激活环境。这是针对 PowerShell 的。如果你使用任何其他终端,你可以在此处找到完整列表:https://docs.python.org/3/library/venv.html现在我们已经完成了虚拟环境的创建,让我们开始提取我们的依赖项。为此,我们将需要opencv
和face_recognition
。在你的终端内使用pip
.pip install opencv-python face_recognition
Face Recognition是一个使用最先进的dlib库的库。我们准备好编写一些代码并识别一些面孔。
创建一个新的 python 文件,我们将调用文件missingPerson.py
,假设我们将使用我们的应用程序匹配失踪人员。导入我们的依赖项并编写我们的前几行。import cv2
import numpy as np
import face_recognition
import os
from face_recognition.api import face_distance
假设我们所有的照片都存储在我们的服务器存储中,我们需要首先将所有人物的图像拉入我们的应用程序并读取这些图像。path = 'MissingPersons'
images = []
missingPersons = []
missingPersonsList = os.listdir(path)
for missingPerson in missingPersonsList :
curImg = cv2.imread(f'{path}/{missingPerson}')
images.append(curImg)
missingPersons.append(os.path.splitext(missingPerson)[0])
print(missingPersons)
在本节中,我们将使用 opencv 读取失踪人员的所有图像并将它们附加到我们的missingPerson
列表中。在我们从存储中读取所有丢失的人脸图像后,我们需要找到人脸编码,以便我们可以使用 CNN 人脸检测器在图像中创建人脸边界框的二维数组。def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
print(encodeList)
return encodeList
encodeListKnown = findEncodings(images)
print('Encoding Complete')
我们将二维数组存储到已知人脸编码列表中。这将需要几分钟。现在我们有了所有失踪人员的面部编码,我们现在要做的就是将它们与我们的报告人图像进行匹配。face_recognition
使用起来非常方便。def findMissingPerson(encodeListKnown, reportedPerson='found1.jpg'):
person = face_recognition.load_image_file(f'ReportedPersons/{reportedPerson}]')
person = cv2.cvtColor(person,cv2.COLOR_BGR2RGB)
try:
encodePerson = face_recognition.face_encodings(person)[0]
comparedFace = face_recognition.compare_faces(encodeListKnown,encodePerson)
faceDis = face_recognition.face_distance(encodeListKnown,encodePerson)
matchIndex = np.argmin(faceDis)
if comparedFace[matchIndex]:
name = missingPersons[matchIndex].upper()
print(name)
return name
else:
print('Not Found')
return False
except IndexError as e:
print(e)
return e
首先我们需要加载被报告人的图像文件,对他们的脸进行编码。剩下的就是将被报告人脸编码与我们已知的人脸编码进行比较。然后一个简单的逻辑匹配他们的索引并返回是否在我们的 missingPersons 列表中找到该人。这种人脸识别不仅用于寻找失踪人员。它可以检测和识别人脸,并且可以根据需要进行操作。好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个
实战项目,实现OpenCV学习进阶。交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

