社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

【深度学习】替换一切:又一款神器,开源了!

机器学习初学者 • 2 年前 • 318 次点击  

网上经常看到,请帮我 P 掉身边的 xxx 求助帖,拍照就会有 P 掉身边路人的需求。

今天介绍一个算法,不仅能够 P 掉指定的人或物,甚至能任意编辑。

配合着文字 prompt 输入,还能修改图片,比如:

输入 text prompt: "a camera lens in the hand"。

手中的甜甜圈就变成了相机镜头。

项目刚刚开源,感兴趣的小伙伴可以看看:

项目地址:https://github.com/geekyutao/inpaint-anything

论文链接:http://arxiv.org/abs/2304.06790

以下内容转自:机器之心

尽管当前图像修补系统取得了重大进展,但它们在选择掩码图和填补空洞方面仍然面临困难。基于 SAM,研究者首次尝试无需掩码(Mask-Free)图像修复,并构建了「点击再填充」(Clicking and Filling) 的图像修补新范式,他们将其称为修补一切 (Inpaint Anything)(IA)。IA 背后的核心思想是结合不同模型的优势,以建立一个功能强大且用户友好的图像修复系统。

IA 拥有三个主要功能:

  • 移除一切(Remove Anything):用户只需点击一下想要移除的物体,IA 将无痕地移除该物体,实现高效「魔法消除」;
  • 填补一切(Fill Anything):同时,用户还可以进一步通过文本提示(Text Prompt)告诉 IA 想要在物体内填充什么,IA 随即通过驱动已嵌入的 AIGC(AI-Generated Content)模型(如 Stable Diffusion)生成相应的内容填充物体,实现随心「内容创作」;
  • 替换一切(Replace Anything):用户也可以通过点击选择需要保留的物体对象,并用文本提示告诉 IA 想要把物体的背景替换成什么,即可将物体背景替换为指定内容,实现生动「环境转换」。

IA 的整体框架如下图所示:

移除一切

移除一切(Remove Anything)示意图

「移除一切」步骤如下:

  • 第 1 步:用户点击想要移除的物体;

  • 第 2 步:SAM 将该物体分割出来;

  • 第 3 步:图像修补模型(LaMa)填补该物体。

填补一切

填补一切(Fill Anything)示意图,图中使用的文本提示:a teddy bear on a bench

「填补一切」步骤如下:

  • 第 1 步:用户点击想要移除的物体;

  • 第 2 步:SAM 将该物体分割出来;

  • 第 3 步:用户通过文本示意想要填充的内容;

  • 第 4 步:基于文本提示的图像修补模型(Stable Diffusion)根据用户提供的文本对物体进行填充。

替换一切

替换一切(Replace Anything)示意图,图中使用的文本提示:a man in office

「替换一切」步骤如上。

更多效果:

研究者建立这样一个有趣的项目,来展示充分利用现有大型人工智能模型所能获得的强大能力,并揭示「可组合人工智能」(Composable AI)的无限潜力。项目所提出的 Inpaint Anything (IA) 是一种多功能的图像修补系统,融合了物体移除、内容填补、场景替换等功能(更多的功能正在路上敬请期待)。

IA 结合了 SAM、图像修补模型(例如 LaMa)和 AIGC 模型(例如 Stable Diffusion)等视觉基础模型,实现了对用户操作友好的无掩码化图像修复,同时支持「点击删除,提示填充」的等「傻瓜式」人性化操作。此外,IA 还可以处理具有任意长宽比和 2K 高清分辨率的图像,且不受图像原始内容限制。




    
往期精彩 回顾





Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/154050
 
318 次点击