关注“FightingCV”公众号
回复“AI”即可获得超100G人工智能的教程
今年爆火的智能体项目AutoGPT,现获得了1200万美元融资。

如今,AutoGPT在GitHub主页上已经有151k星。
项目地址:https://github.com/Significant-Gravitas/AutoGPT
不得不说,Auto-GPT在AI领域掀起了巨大的波澜,它就像是赋予了GPT-4记忆和实体一样,让它能够独立应对任务,甚至从经验中学习,不断提高自己的性能。
为了便于Auto-GPT是如何工作的,让我们可以用一些简单的比喻来分解它。
首先,想象Auto-GPT是一个足智多谋的机器人。
我们每分配一个任务,Auto-GPT都会给出一个相应的解决计划。比如,需要浏览互联网或使用新数据,它便会调整其策略,直到任务完成。
这就像拥有一个能处理各种任务的私人助手,如市场分析、客户服务、市场营销、财务等。
具体来说,想让Auto-GPT运行起来,就需要依靠以下4个组件:
Auto-GPT是使用强大的GPT-4和GPT-3.5语言模型构建的,它们充当机器人的大脑,帮助它思考和推理。
这就像机器人从错误中学习的能力。Auto-GPT 可以回顾它的工作,在以前的努力的基础上再接再厉,并利用它的历史来产生更准确的结果。
与矢量数据库(一种内存存储解决方案)集成,使Auto-GPT能够保留上下文并做出更好的决策。这就像给机器人配备了长时记忆,可以记住过去的经历。
Auto-GPT的文件操作、网页浏览和数据检索等功能使其用途广泛。这就像赋予机器人多种技能来处理更广泛的任务。然而,这些诱人的前景可能尚未转化为Auto-GPT真正可以实现的能力。
Auto-GPT引入了一个非常有趣的概念,允许生成智能体来委托任务。虽然,这种机制还处于初级阶段,其潜力尚未被充分挖掘。不过,有多种方法可以增强和扩展当前的智能体系统,为更高效、更具动态性的互动提供新的可能性。
一个潜在的改进是引入异步智能体。通过结合异步等待模式,智能体可以并发操作而不会阻塞彼此,从而显著提高系统的整体效率和响应速度。这个概念受到了现代编程范式的启发,这些范式已经采用了异步方法来同时管理多个任务。另一个有前景的方向是实现智能体之间的相互通信。通过允许智能体进行通信和协作,它们可以更有效地共同解决复杂问题。这种方法类似于编程中的IPC概念,其中多个线程/进程可以共享信息和资源以实现共同目标。
随着GPT驱动的智能体不断发展,这种创新方法的未来似乎十分光明。新的研究,如「Generative Agents: Interactive Simulacra of Human Behavior」,强调了基于智能体的系统在模拟可信的人类行为方面的潜力。论文中提出的生成式智能体,可以以复杂且引人入胜的方式互动,形成观点,发起对话,甚至自主计划和参加活动。这项工作进一步支持了智能体机制在AI发展中具有前景的论点。通过拥抱面向异步编程的范式转变并促进智能体间通信,Auto-GPT可以为更高效和动态的问题解决能力开辟新可能。将《生成式智能体》论文中引入的架构和交互模式融入其中,可以实现大型语言模型与计算、交互式智能体的融合。这种组合有可能彻底改变在AI框架内分配和执行任务的方式,并实现更为逼真的人类行为模拟。智能体系统的开发和探索可极大地促进AI应用的发展,为复杂问题提供更强大且动态的解决方案。https://twitter.com/Auto_GPT/status/1713009267194974333往期回顾
基础知识
【CV知识点汇总与解析】|损失函数篇
【CV知识点汇总与解析】|激活函数篇
【CV知识点汇总与解析】| optimizer和学习率篇
【CV知识点汇总与解析】| 正则化篇
【CV知识点汇总与解析】| 参数初始化篇
【CV知识点汇总与解析】| 卷积和池化篇 (超多图警告)
【CV知识点汇总与解析】| 技术发展篇 (超详细!!!)
最新论文解析
NeurIPS2022 Spotlight | TANGO:一种基于光照分解实现逼真稳健的文本驱动3D风格化
ECCV2022 Oral | 微软提出UNICORN,统一文本生成与边框预测任务
NeurIPS 2022 | VideoMAE:南大&腾讯联合提出第一个视频版MAE框架,遮盖率达到90%
NeurIPS 2022 | 清华大学提出OrdinalCLIP,基于序数提示学习的语言引导有序回归
SlowFast Network:用于计算机视觉视频理解的双模CNN
WACV2022 | 一张图片只值五句话吗?UAB提出图像-文本匹配语义的新视角!
CVPR2022 | Attention机制是为了找最相关的item?中科大团队反其道而行之!
ECCV2022 Oral | SeqTR:一个简单而通用的 Visual Grounding网络
如何训练用于图像检索的Vision Transformer?Facebook研究员解决了这个问题!
ICLR22 Workshop | 用两个模型解决一个任务,意大利学者提出维基百科上的高效检索模型
See Finer, See More!腾讯&上交提出IVT,越看越精细,进行精细全面的跨模态对比!
MM2022|兼具低级和高级表征,百度提出利用显式高级语义增强视频文本检索
MM2022 | 用StyleGAN进行数据增强,真的太好用了
MM2022 | 在特征空间中的多模态数据增强方法
ECCV2022|港中文MM Lab证明Frozen的CLIP 模型是高效视频学习者
ECCV2022|只能11%的参数就能优于Swin,微软提出快速预训练蒸馏方法TinyViT
CVPR2022|比VinVL快一万倍!人大提出交互协同的双流视觉语言预训练模型COTS,又快又好!
CVPR2022 Oral|通过多尺度token聚合分流自注意力,代码已开源
CVPR Oral | 谷歌&斯坦福(李飞飞组)提出TIRG,用组合的文本和图像来进行图像检索