社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

胡培君等ACS Catalysis:Cr掺杂ZnO表面CO活化的机器学习加速研究

催化开天地 • 1 年前 • 350 次点击  

【做计算 找华算】理论计算助攻顶刊,10000+成功案例,全职海归技术团队、正版商业软件版权!

经费预存选华算,高至15%预存增值!

作为合成气转化氧化物-沸石(OX-ZEO)复合催化剂的关键组成部分,Cr掺杂ZnO三元体系可以被视为理解氧化物催化剂的模型体系。然而,由于其结构的复杂性,传统的实验和理论方法都遇到了重大挑战。

基于此,英国贝尔法斯特女王大学胡培君教授(通讯作者)等人使用机器学习加速方法,包括巨正则蒙特卡罗法和遗传算法,探索了不同的Cr和氧空位(OV)浓度的ZnO(1010)表面。然后通过DFT计算系统地研究了不同Cr和OV浓度的稳定表面对CO活化的影响。

研究表明,Cr倾向于优先出现在ZnO(1010)的表面而不是其内部区域,并且Cr掺杂结构在高Cr和OV浓度下倾向于沿[0001]方向形成矩形岛。在掺Cr的ZnO表面上,去除附着在Cr上的氧显著地增强了CO的吸附。对于同一组分,未重构表面的二配位Cr比重构表面的四配位Cr具有更强的CO吸附能。

此外,CO反应性的详细计算揭示了C-O键解离的反应能垒(Ea)与Cr和OV浓度之间的反比关系,并且观察到OV形成能与CO活化的Ea之间存在线性关系。进一步的分析表明,当相邻的OV在[1210]方向上几何排列且Cr掺杂在反应位点周围时,C-O键解离更加有利。这些发现为Cr掺杂ZnO表面的CO活化提供了更深入的见解,并为合成气转化的有效催化剂的合理设计提供了有价值的指导。

Unravelling the Impact of Metal Dopants and Oxygen Vacancies on Syngas Conversion over Oxides: A Machine Learning-Accelerated Study of CO Activation on Cr-Doped ZnO Surfaces. ACS Catal., 2023, DOI: 10.1021/acscatal.3c03648.

https://doi.org/10.1021/acscatal.3c03648.

【做计算 找华算】华算科技专注DFT代算服务、正版商业软件版权、全职海归计算团队,10000+成功案例!

客户成果发表在Nature、Nature Catalysis、JACS、Angew.、AM、AEM、AFM等顶刊,好评如潮,专业靠谱!

添加下方微信好友,立即咨询

电话/微信:13622327160

 点击阅读原文,立即咨询计算!

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/165045
 
350 次点击