Py学习  »  机器学习算法

MCMC确定机器学习集成模型最佳权重

数据STUDIO • 1 年前 • 341 次点击  


作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础。

MCMC采样

马尔科夫链

马尔科夫链假设某一时刻状态转移的概率只依赖于它的前一个状态。举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。当然这么说可能有些武断,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等,当然MCMC也需要它。

如果用精确的数学定义来描述,则假设我们的序列状态是...,那么我们的在时刻Xt+1状态的条件概率仅仅依赖于时刻Xt即:

既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。

马尔科夫链采样

如果我们可以得到我们需要采样样本的平稳分布所对应的马尔科夫链状态转移矩阵,那么我们就可以用马尔科夫链采样得到我们需要的样本集,进而进行蒙特卡罗模拟。

基于马尔科夫链的采样过程:

  1. 输入马尔科夫链状态转移矩阵,设定状态转移次数阈值,需要的样本个数
  2. 从任意简单概率分布采样得到初始状态值3.: 从条件概率分布 中采样得到样本

样本集即为我们需要的平稳分布对应的样本集。

M-H采样

M-H采样是MCMC采样的易用版本。

给定一个概率平稳分布,很难直接找到对应的马尔科夫链状态转移矩阵。而只要解决这个问题,我们就可以找到一种通用的概率分布采样方法,进而用于蒙特卡罗模拟。

M-H采样算法过程如下:

  1. 输入我们任意选定的马尔科夫链状态转移矩阵,平稳分布,设定状态转移次数阈值,需要的样本个数
  2. 从任意简单概率分布采样得到初始状态值
  3. :
    a. 从条件概率分布中采样得到样本
    b. 从均匀分布采样
    c. 如果 , 则接受转移,即
    d. 否则不接受转移,即

样本集即为我们需要的平稳分布对应的样本集。

M-H采样实例

为了更容易理解,这里给出一个M-H采样的实例。

在例子里,我们的目标平稳分布是一个均值3,标准差2的正态分布,而选择的马尔可夫链状态转移矩阵的条件转移概率是以i𝑖为均值,方差1的正态分布在位置j𝑗的值。这个例子仅仅用来让大家加深对M-H采样过程的理解。毕竟一个普通的一维正态分布用不着去用M-H采样来获得样本。

代码如下:

import random
import math
from scipy.stats import norm
import matplotlib.pyplot as plt
%matplotlib inline

def norm_dist_prob(theta):
    y = norm.pdf(theta, loc=3, scale=2)
    return y

T = 5000
pi = [0 for i in range(T)]
sigma = 1
t = 0
while t -1:
    t = t + 1
    pi_star = norm.rvs(loc=pi[t - 1], scale=sigma, size=1, random_state=None)
    alpha = min(1, (norm_dist_prob(pi_star[0]) / norm_dist_prob(pi[t - 1])))

    u = random.uniform(01)
    if u         pi[t] = pi_star[0]
    else:
        pi[t] = pi[t - 1]


plt.scatter(pi, norm.pdf(pi, loc=3 , scale=2))
num_bins = 50
plt.hist(pi, num_bins, normed=1, facecolor='red', alpha=0.7)
plt.show()

MCMC采样集成模型权重

基本步骤

  1. 初始化集成模型权重
  2. 生产新的权重
  3. 如果 MAE 较低,则立即接受新权重,否则接受新权重的概率为 np.exp(-diff/.3)
  4. 重复2-3步

初始化权重

设共有个模型,则模型权重为

weight = np.array([1.0/num,]*num)

生产新的权重

目标平稳分布为:高斯分布

马尔可夫链状态转移矩阵的条件转移概率:0.005

new_weights = weight+ np.array([0.005,]*num)*np.random.normal(loc=0.0, scale=1.0, size=num)
new_weights[new_weights 0.01]=0.01

接受率

def MAE(y_pred,y):
    error = np.exp(y_pred) -np.exp(y)
    error = np.mean((error**2)**.5)
    return error
  
diff = MAE(pred_new,y) - MAE(pred_old,y)
prob = min(1,np.exp(-diff/.3))

完整代码

上下滑动查看更多源码

import numpy 


    
as np
np.random.seed(123)
import pandas as pd
import xgboost as xgb
import gc
# =======================
from datetime import datetime
from scipy.optimize import minimize
from sklearn.metrics import mean_absolute_error
# =======================

# Few extra functions

def timer(start_time=None):
    if not start_time:
        start_time = datetime.now()
        return start_time
    elif start_time:
        thour, temp_sec = divmod((datetime.now() - start_time).total_seconds(), 3600)
        tmin, tsec = divmod(temp_sec, 60)
        print(' Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2)))

def mae_func(weights):
    ''' scipy minimize will pass the weights as a numpy array '''
    final_prediction = 0
    for weight, prediction in zip(weights, predictions):
            final_prediction += weight*prediction

    return mean_absolute_error(Y_values, final_prediction)

# =======================

#''' This code gets a xgboost ensemble of 5 models, and tries to find the optimum weights through MCMC magic''''

num_folds = 2 #should be larger, but kaggle scirpts has run time 

def MAE(y,dtrain):
    answer = dtrain.get_label()
    answer = np.array(answer)
    prediction = np.array(y)
    error = np.exp(prediction) -np.exp(answer)
    error = np.mean((error**2)**.5)
    return 'mcc error',error
    
def MAE2(y,dtrain):
    answer = dtrain.loss2
    answer = np.array(answer)
    prediction = np.array(y)
    error = prediction - answer
    error = np.mean((error**2)**.5)
    return 'mcc error',error


## smaller dataset for faster training ###
## 欢迎关注@公众号:数据STUDIO 更多优质内容每日11:30准时推送
## https://www.kaggle.com/competitions/allstate-claims-severity/data
train=pd.read_csv('../input/train.csv',nrows=10000)
test=pd.read_csv('../input/test.csv',nrows=10000)
train['loss']=np.log(train['loss']+200)
train['loss2']=np.exp(train['loss'])-200

## encode cat variables as discrete integers 
for i in list(train.keys()):
 if 'cat' in i:
  dictt = {}
  var = sorted(list(train[i].unique()))
  for ii in range(0,len(var)):
   dictt[var[ii]]=ii
  train[i] = train[i].map(dictt)
  test[i] = test[i].map(dictt)
        
parameters =[]
for i in (6,12):
    for j in (60,):
            for l in (1,2):
                depth = i
                min_child_weight = j
                gamma=l
                parameters += [[depth,min_child_weight,gamma],]
predictors = ['cat1''cat2''cat3''cat4''cat5''cat6''cat7''cat8''cat9''cat10''cat11''cat12''cat13''cat14''cat15''cat16''cat17''cat18''cat19''cat20''cat21''cat22' 'cat23''cat24''cat25''cat26''cat27''cat28''cat29''cat30''cat31''cat32''cat33''cat34''cat35''cat36''cat37''cat38''cat39''cat40''cat41''cat42''cat43''cat44''cat45''cat46''cat47''cat48''cat49''cat50''cat51''cat52''cat53''cat54''cat55''cat56''cat57''cat58''cat59''cat60''cat61''cat62''cat63''cat64''cat65''cat66''cat67''cat68''cat69''cat70''cat71''cat72''cat73''cat74''cat75''cat76''cat77''cat78''cat79''cat80''cat81''cat82''cat83''cat84''cat85''cat86''cat87''cat88''cat89''cat90''cat91''cat92''cat93''cat94''cat95''cat96''cat97''cat98''cat99''cat100''cat101''cat102''cat103''cat104''cat105''cat106''cat107''cat108''cat109''cat110''cat111''cat112''cat113''cat114''cat115''cat116''cont1''cont2''cont3''cont4''cont5''cont6''cont7''cont8''cont9''cont10''cont11''cont12''cont13''cont14']
target='loss'
result={}

## train 4 models with different paremeters ###
for i,j,l in parameters:
    xgtest=xgb.DMatrix(test[predictors].values,missing=np.NAN,feature_names=predictors)
    depth,min_child_weight,gamma=i,j,l
    result[(depth,min_child_weight,gamma)]=[]
    ### name of prediction ###
    name = 'feature_L2_%s_%s_%s_%s' %(str(depth), str(min_child_weight), str(gamma),str(num_folds))
    train  [name]=0
    test[name]=0
    for fold in range(0,num_folds):
        print ('\ntraining  parameters', i,j,l,',fold',fold)
        gc.collect() #to clear ram of garbage
        train_i = [x for x in train.index  if x%num_folds != fold]
        cv_i = [x for x in train.index if x%num_folds == fold]
        dtrain= train.iloc[train_i]
        dcv = train.iloc[cv_i]
        xgcv    = xgb.DMatrix(dcv[predictors].values, label=dcv[target].values,missing=np.NAN,feature_names=predictors)
        xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values,missing=np.NAN,feature_names=predictors)

        #watchlist  = [ (xgtrain,'train'),(xgcv,'eval')] #i got valueerror in this
        params = {}
        params["objective"] =  "reg:linear"
        params["eta"] = 0.1
        params["min_child_weight"] = min_child_weight
        params["subsample"] = 0.5
        params["colsample_bytree"] = 0.5
        params["scale_pos_weight"] = 1.0
        params["silent"] = 1
        params["max_depth"] = depth
        params['seed']=1
        params['lambda']=1
        params[ 'gamma']= gamma
        plst = list(params.items())
        early_stopping_rounds=5
        result_d=xgb.train(plst,xgtrain,50,maximize=0,feval = MAE)
        #print (result_d.predict(xgcv))
        print ('train_result',MAE(result_d.predict(xgcv),xgcv))
        ### write predictions onto train and test set ###
        train.set_value(cv_i,name,np.exp(result_d.predict(xgcv))-200)
        test.set_value(test.index,name,test[name]+((np.exp(result_d.predict(xgtest))-200)/num_folds))
        gc.collect()


#### NOW THE MCMC PART to find individal weights for ensemble####

features = [x for x in  train.keys() if 'feature' in x]
print ('features are these:', features)
num=len(features)
#intialize weights
weight = np.array([1.0/num,]*num)

# This is to define variables to be used later
train['pred_new']=0
train['pred_old']=0
counter = 0
n=1000 ###MCMC steps
result={}

# =======================
start_time = timer(None)
# =======================
print('\n Finding weights by MCMC ...')
for i in range(0,len(features)):
    train['pred_new'] += train[features[i]]*weight[i]
    print ('feature:',features[i],',MAE=',MAE2(train[features[i]],train))
print ('combined all features',',MAE=', MAE2(train.pred_new,train))
train['pred_old']=train['pred_new']
#### MCMC  #### 
### MCMC algo for dummies 
### 1. Get initialize ensemble weights
### 2. Generate new weights 
### 3. if MAE is lower, accept new weights immediately , or else accept new weights with probability of np.exp(-diff/.3)
### 4. repeat 2-3
for i in range(0,n):
     new_weights = weight+ np.array([0.005,]*num)*np.random.normal(loc=0.0, scale=1.0, size=num)
     new_weights[new_weights 0.01]=0.01
     train['pred_new']=0
     for ii in range(0,len(features)):
         train['pred_new'] += train[features[ii]]*new_weights[ii]
     diff = MAE2(train.pred_new,train)[1] - MAE2(train.pred_old,train)[1]
     prob = min(1,np.exp(-diff/.3))
     random_prob = np.random.rand()
     if random_prob          weight= new_weights
         train['pred_old']=train['pred_new']
         result[i] = (MAE2(train.pred_new,train)[1] ,MAE2(train.pred_old,train)[1],prob,random_prob ,weight)
         #print (MAE2(train.pred_new,train)[1] ,MAE2(train.pred_old,train)[1],prob,random_prob),
         counter +=1
print (counter *1.0 / n, 'Acceptance Ratio'#keep this [0.4,0.6] for best results
print ('best result MAE', sorted([result[i] for i in result])[0:1][0])

weight=sorted([result[i] for i in result])[0:1][-1]
train['pred_new']=0
for i in range(0,len(features)):
    train['pred_new'] += train[features[i]]*weight[i]
print ('combined all features plus MCMC weights:',',MAE=', MAE2(train.pred_new,train))

print ('weights:', weight[-1])
### notice the weights do not necessarily sum to 1 ###

# =======================
timer(start_time)
# =======================


# =======================
#
start_time = timer(None)
print('\n Finding weights by minimization ...')
Y_values = train['loss2'].values
predictions = []
lls = []
wghts = []

for i in range(len(features)):
    predictions.append(np.array(train[features[i]]))

for i in range(1000):
    starting_values = np.random.uniform(size=len(features))
    cons = ({'type':'eq','fun':lambda w: 1-sum(w)})
    bounds = [(0,1)]*len(predictions)

    res = minimize(mae_func, starting_values, method='L-BFGS-B', bounds=bounds, options={'disp'False'maxiter'100000})

    lls.append(res['fun'])
    wghts.append(res['x'])
# Uncomment the next line if you want to see the weights and scores calculated in real time
#    print('Weights: {weights}  Score: {score}'.format(weights=res['x'], score=res['fun']))

bestSC = np.min(lls)
bestWght = wghts[np.argmin(lls)]

print('\n Ensemble Score: {best_score}'.format(best_score=bestSC))
print('\n Best Weights: {weights}'.format(weights=bestWght))

timer(start_time)

🏴‍☠️宝藏级🏴‍☠️ 原创公众号『数据STUDIO』内容超级硬核。公众号以Python为核心语言,垂直于数据科学领域,包括可戳👉 PythonMySQL数据分析 数据可视化机器学习与数据挖掘爬虫 等,从入门到进阶!

长按👇关注- 数据STUDIO -设为星标,干货速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/172049
 
341 次点击