社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

【直播】【上大材料基因组工程院】在材料信息学和机器学习方法开发的十字路口

蔻享学术 • 6 天前 • 41 次点击  



在材料信息学和机器学习方法开发的十字路口


2024年9月6日 15:00


蔻享学术
扫码观看直播



报告人介绍






Sergei Manzhos

Sergei Manzhos is Associate Professor at the School of Materials and Chemical Technology,Tokyo Institute of Technology. He holds a master's degree in radio physics and electronics from Kharkiv National University, Ukraine (1999)and a Ph.D. in chemistry from Queen's University, Canada (2005). He was NSERC Postdoctoral Fellow at the University of Montreal, Canada, in 2005-2008. In 2008-2012 he was Project Assistant Professor at the University of Tokyo, and in 2012-2019 Assistant Professor and group leader at the Department of Mechanical Engineering, National University of Singapore. He was Associate Professor at the Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique (INRS) in Quebec, Canada, before joining Tokyo Institute of Technology in 2021. His research interests include modeling of materials and interfaces for renewable energy technologies, computational spectroscopy, large-scale electron density-based methods and machine learning, including method development for these.



报告摘要


Materials infomatics is entening the mainstream of scientific and technological exploration. It typically signifies making predictions of material structures and properties from descriptors of chemical composition and structure using machine leaming (ML) techniques. For the latter, the methods used range from linear regression to kemel regressions to decision trees to neural networks with sometimes rather involved architectures and large numbers of nonlinear parameters. The data aspect of materials informatics is important, whereby sampling of the space of descriptors is bound to be sparse in suficiently high dimensionality。This is challenging for mainstream Ml methods, in particular, leading to overfittimg, I will introduce hybrid approaches combining neural netwvorks, kemel regressions, and orders-of-coupling representations that allow effectively dealing with the challenges of data sparsity, costly nonlinear optimization, and overfiting, We obtain methods that combine the robusbess of a linear regression with the expressive power of NNs and nonlinear kemel methods. l will demonstrate the advantages of such hybrid approaches on examples of material property prediction, ML-enhanced rapid prescreening of ceramics, and renewable energy system management.



声明:此文是出于传递更多信息之目的。部分图片、资料来源于网络,版权归原作者所有,如有侵权请联系后台删除。

往期推荐:





铜基和镍基超导材料中集体激发的共振非弹性X射线散射研究


Advancing Orbital-Free DFT and DFTB for Large-…


浙大姬扬教授 | 吐血推荐《概率论沉思录》(内含视频)


浙大李敬源教授:固有无序蛋白相互作用的人工智能算法


浙大王大伟教授:光的量子拓扑态


点击“阅读原文

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/173843
 
41 次点击