针对领域内缺乏对深度学习在多模态遥感数据融合系统性综述的问题,中国科学院空天信息创新研究院高连如研究员课题组在《International Journal of Applied Earth Observations and Geoinformation》发表了国际首篇多模态深度学习的遥感数据融合综述“Deep learning in multimodal remote sensing data fusion: A comprehensive review”,文章从文献统计、方法介绍、资源汇总以及未来展望四个角度对该领域进行了全面剖析,梳理了该方向的研究进展与前沿方法,整理了相关代码与公开数据集,同时指出了当前面临的挑战与未来发展方向,以期推进深度学习在多模态遥感数据融合领域中的应用。
标题:Deep learning in multimodal remote sensing data fusion: A comprehensive review作者:Li, Jiaxin; Hong, Danfeng; Gao, Lianru; Yao, Jing; Zheng, Ke; Zhang, Bing; Chanussot, Jocelyn发表期刊:International Journal of Applied Earth Observations and GeoinformationDOI:10.1016/j.jag.2022.102926引用格式:Li, Jiaxin, Hong, Danfeng, Gao, Lianru, et al. Deep learning in multimodal remote sensing data fusion: A comprehensive review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926.论文链接
:https://www.sciencedirect.com/science/article/pii/S1569843222001248首页截图: