背景: 之前的连板涨停分析文章中, 昨天发现 chinese-calendar 在处理2025 交易日部分时间存在问题, 故这里写篇文章说明下修改方式。先问问DeepSeek处理交易日日历库有哪些方式。一、第三方日历库:开箱即用的解决方案
1. pandas_market_calendars
import pandas_market_calendars as mcal
# 获取纽交所日历
nyse = mcal.get_calendar('NYSE')
# 查询2023年交易日
schedule = nyse.schedule(start_date='2023-01-01', end_date='2023-12-31')
# 转换为日期列表
trading_days = mcal.date_range(schedule, frequency='1D').date.tolist()
优势特点:
支持全球30+主要交易所
内置节假日修正规则
支持自定义日期范围查询
2. exchange_calendars
import exchange_calendars as ecals
# 获取上交所日历
sse = ecals.get_calendar('XSHG')
# 检查特定日期
print(sse.is_session('2023-10-01')) # 输出False
二、金融数据API:实时更新的云端方案
1. Tushare Pro
import tushare as ts
pro = ts.pro_api('YOUR_API_TOKEN')
# 获取上交所交易日历
df = pro.trade_cal(exchange='SSE', start_date='20230101', end_date=
'20231231')
# 筛选开市日
trading_days = df[df['is_open'] == 1]['cal_date'].tolist()
2. AKShare
import akshare as ak
# 获取深交所交易日历
df = ak.tool_trade_date_hist_sina()
# 转换日期格式
df['trade_date'] = pd.to_datetime(df['trade_date'])
三、本地化处理方案
1. 交易所官网CSV
import pandas as pd
# 读取上交所官方日历
df = pd.read_csv('SSE_Calendar_2023.csv', parse_dates=['date'])
# 创建交易日布尔掩码
trading_mask = df['is_trading_day'].astype(bool)
2. SQL数据库集成
import sqlalchemy as sa
engine = sa.create_engine('postgresql://user:pass@localhost/calendar_db')
# 查询香港交易日
query = """
SELECT date FROM hkex_calendar
WHERE is_trading_day = True
AND date BETWEEN '2023-01-01' AND '2023-06-30'
"""
hk_days = pd.read_sql(query, engine)['date'].tolist()
四、混合解决方案实践
from datetime import date, timedelta
from dateutil import rrule
# 生成自然日序列
all_days = list(rrule.rrule(
rrule.DAILY,
dtstart=date(2023,1,1),
until
=date(2023,12,31)
))
# 与本地数据库比对
filtered_days = [day for day in all_days
if day.weekday() < 5
and day not in local_holidays]
五、方案选型决策树
选择适合的交易日获取方式需考虑:
覆盖市场:境内/境外/多市场
更新频率:实时/日更/月更
历史深度:是否需要十年以上数据
准确性要求:是否包含临时休市
系统架构:云端/本地/混合部署
推荐组合策略:
六、避坑指南
时区陷阱:所有日期统一转换为UTC+8
节假日更新:建立定期校准机制
夏令时影响:欧美市场特别注意
上面的几种方式,我在之前的方式中或多或少用过其中几种,比如pandas_market_calendars(处理A股存在一些问题) 、tushare(需要注册积分), 想了下, 还是用akshare 修改了 连板涨停代码。
完整代码如下,需要的自取
import streamlit as st
import pywencai
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import akshare as ak
# Setting up pandas display options
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.expand_frame_repr', False)
pd.set_option('display.max_colwidth', 100)
def get_limit_up_data(date):
param = f"非ST,{date.strftime('%Y%m%d')}涨停"
df = pywencai.get(query=param, sort_key='成交金额', sort_order='desc', loop=True)
return df
def get_yesterday_zhangting_data(previous_date , date):
param = f"非ST,{previous_date.strftime('%Y%m%d')}涨停"
df = pywencai.get(query=param, sort_key='成交金额', sort_order='desc', loop=True)
return df
def get_poban(date):
param = f"非ST,{date.strftime('%Y%m%d')}曾涨停"
df = pywencai.get(query=param, sort_key='成交金额', sort_order='desc', loop=True)
return df
def get_limit_down_data(date):
param = f"非ST,{date.strftime('%Y%m%d')}跌停"
df = pywencai.get(query=param, sort_key='成交金额', sort_order='desc', loop=True)
return df
def analyze_continuous_limit_up(df, date):
# 提取连续涨停天数列和涨停原因类别列
continuous_days_col = f'连续涨停天数[{date.strftime("%Y%m%d")}]'
reason_col = f'涨停原因类别[{date.strftime("%Y%m%d")}]'
# 确保涨停原因类别列存在
if reason_col not in df.columns:
df[reason_col] = '未知'
# 按连续涨停天数降序排序,然后按涨停原因类别排序
df_sorted = df.sort_values([continuous_days_col, reason_col], ascending=[False, True])
# 创建结果DataFrame
result = pd.DataFrame(columns=['连续涨停天数', '股票代码', '股票简称', '涨停原因类别'])
# 遍历排序后的DataFrame,为每只股票创建一行
for _, row in df_sorted.iterrows():
new_row = pd.DataFrame({
'连续涨停天数': [row[continuous_days_col]],
'股票代码': [row['股票代码']],
'股票简称': [row['股票简称']],
'涨停原因类别': [row[reason_col]]
})
result = pd.concat([result, new_row], ignore_index=True)
return result
def get_concept_counts(df, date):
concepts = df[f'涨停原因类别[{date.strftime("%Y%m%d")}]'].str.split('+').explode().reset_index(drop=True)
#concepts = df[f'涨停原因类别[{date.strftime("%Y%m%d")}]'].str.split('+', n=1).str[0].reset_index(drop=True)
concept_counts = concepts.value_counts().reset_index()
concept_counts.columns = ['概念', '出现次数']
return concept_counts
def calculate_promotion_rates(current_df, previous_df, current_date, previous_date):
"""Calculate promotion rates between consecutive days"""
current_days_col = f'连续涨停天数[{current_date.strftime("%Y%m%d")}]'
previous_days_col = f'连续涨停天数[{previous_date.strftime("%Y%m%d")}]'
promotion_data = []
# Calculate for each level (from 1 to max consecutive days)
max_days = max(current_df[current_days_col].max(), previous_df[previous_days_col].max())
for days in range(1, int(max_days)):
# Previous day count for current level
prev_count = len(previous_df[previous_df[previous_days_col] == days])
# Current day count for next level
curr_count = len(current_df[current_df[current_days_col] == days + 1])
if prev_count > 0:
promotion_rate = f"{curr_count}/{prev_count}={round(curr_count / prev_count * 100 if prev_count > 0 else 0)}%"
else:
promotion_rate = "N/A"
# Get stocks that promoted
promoted_stocks = current_df[current_df[current_days_col] == days + 1][
['股票简称', f'涨停原因类别[{current_date.strftime("%Y%m%d")}]']]
promotion_data.append({
'连板数': f"{days}板{days + 1}",
'晋级率': promotion_rate,
'股票列表': promoted_stocks
})
return pd.DataFrame(promotion_data)
def app():
st.title("A股涨停概念分析")
# Date selection
max_date = datetime.now().date()
selected_date = st.date_input("选择分析日期", max_value=max_date, value=max_date)
trade_date_range = ak.tool_trade_date_hist_sina()
trade_date_range['trade_date'] = pd.to_datetime(trade_date_range['trade_date']).dt.date
if selected_date not in trade_date_range['trade_date'].values:
st.write("所选日期不是A股交易日,请选择其他日期。")
return
target_date = selected_date
previous_dates = trade_date_range[trade_date_range['trade_date'] < target_date]
if previous_dates.empty:
raise ValueError("No previous trading day found before the given date")
# 获取最近的交易日
previous_date = previous_dates['trade_date'].max()
st.write(f"分析日期: {selected_date} 和 {previous_date} (前一交易日)")
# 获取关键数据
selected_df = get_limit_up_data(selected_date) # 今日涨停
previous_df = get_limit_up_data(previous_date) # 昨日涨停
poban_df = get_poban(selected_date) # 今日曾涨停
yesterdayZhangting = get_yesterday_zhangting_data(previous_date, selected_date) # 昨日涨停股票
# 计算关键指标 ----------------------------------------------------------
# 昨日涨停股票列表
yesterday_zt_stocks = yesterdayZhangting['股票代码'].tolist() if not yesterdayZhangting.empty else []
# 今日涨停股票列表
today_zt_stocks = selected_df['股票代码'].tolist() if not selected_df.empty else []
# 连板率计算(昨日涨停今日继续涨停)
lianban_molecule = len(set(yesterday_zt_stocks) & set(today_zt_stocks))
lianban_denominator = len(yesterday_zt_stocks)
lianban_rate = (lianban_molecule / lianban_denominator * 100) if lianban_denominator > 0 else 0
# 破板率计算(曾涨停但未封板)
poban_stocks = poban_df['股票代码'].tolist() if not poban_df.empty else []
poban_molecule = len(poban_stocks)
poban_denominator = len(poban_stocks) + len(today_zt_stocks)
poban_rate = (poban_molecule / poban_denominator * 100) if poban_denominator > 0 else 0
# 昨日涨停今日涨幅(获取实际涨幅数据)
yesterday_today_pct = get_yesterday_zhangting_data(previous_date,selected_date)
# 计算上涨比例
yesterday_today_pct['最新涨跌幅'] = pd.to_numeric(yesterday_today_pct['最新涨跌幅'], errors='coerce')
# Calculate up_count, ignoring NaN values
up_count = np.sum(yesterday_today_pct['最新涨跌幅'] > 0)
# Calculate total_count, excluding NaN values
total_count = yesterday_today_pct['最新涨跌幅'].count()
# Calculate up_rate
up_rate = (up_count / total_count * 100) if total_count > 0 else 0
# 展示关键指标 ----------------------------------------------------------
st.subheader("情绪指标")
col1, col2, col3 = st.columns(3)
# 昨日涨停今日上涨率
col1.metric(
"昨日涨停今日上涨率",
f"{up_count}/{total_count}={up_rate:.1f}%",
help="昨日涨停的股票中今日上涨的比例"
)
# 连板率
col2.metric(
"连板晋级率",
f"{lianban_molecule}/{lianban_denominator}={lianban_rate:.1f}%",
help="昨日涨停股票今日继续涨停的比例"
)
# 破板率
col3.metric(
"涨停破板率",
f"{poban_molecule}/{poban_denominator}={poban_rate:.1f}%",
help="今日曾触及涨停但收盘未封板的比例"
)
# Fetch data for both days
selected_df = get_limit_up_data(selected_date)
previous_df = get_limit_up_data(previous_date)
selected_limit_down_df = get_limit_down_data(selected_date)
previous_limit_down_df = get_limit_down_data(previous_date)
# Analyze continuous limit-up for both days
selected_continuous = analyze_continuous_limit_up(selected_df, selected_date)
previous_continuous = analyze_continuous_limit_up(previous_df, previous_date)
# Get concept counts for both days
selected_concepts = get_concept_counts(selected_df, selected_date)
previous_concepts = get_concept_counts(previous_df, previous_date)
# Merge concept counts
merged_concepts = pd.merge(selected_concepts, previous_concepts, on='概念', how='outer',
suffixes=('_selected', '_previous'))
merged_concepts = merged_concepts.fillna(0)
# Calculate change
merged_concepts['变化'] = merged_concepts['出现次数_selected'] - merged_concepts['出现次数_previous']
# Sort by '出现次数_selected' in descending order
sorted_concepts = merged_concepts.sort_values('出现次数_selected', ascending=False)
# Display total limit-up and limit-down stocks for both days
st.subheader("涨停和跌停股票数量变化")
# 计算涨停和跌停数量
selected_total = len(selected_continuous) if selected_continuous is not None else 0
previous_total = len(previous_continuous) if previous_continuous is not None else 0
change = selected_total - previous_total
def get_safe_limit_down_total(limit_down_df):
"""安全地获取跌停股票数量,如果数据为 None 则返回 0"""
return len(limit_down_df) if limit_down_df is not None else 0
selected_limit_down_total = len(selected_limit_down_df) if selected_limit_down_df is not None else 0
previous_limit_down_total = len(previous_limit_down_df) if previous_limit_down_df is not None else 0
limit_down_change = selected_limit_down_total - previous_limit_down_total
# 计算涨停环比百分比变化
if previous_total != 0:
percentage_change_limit_up = (change / previous_total) * 100
else:
percentage_change_limit_up = 0
# 计算跌停环比百分比变化
if previous_limit_down_total != 0:
percentage_change_limit_down = (limit_down_change / previous_limit_down_total) * 100
else:
percentage_change_limit_down = 0
# 显示合并后的涨停和跌停数量
col1, col2, col3 = st.columns(3)
col1.metric("上交易日涨跌停数", f"{previous_total} : {previous_limit_down_total}")
col2.metric("选定日期涨跌停数", f"{selected_total} : {selected_limit_down_total}")
col3.metric("涨停变化 : 跌停变化", f"{change:+d} : {limit_down_change:+d}")
# Display concept changes
st.subheader("涨停概念变化")
st.dataframe(sorted_concepts)
# Create a bar chart for top 10 concepts
top_10_concepts = sorted_concepts.head(10)
# Display continuous limit-up analysis
st.subheader("连续涨停天数分析")
st.dataframe(selected_continuous)
st.subheader("连板晋级率分析")
promotion_rates = calculate_promotion_rates(selected_df, previous_df, selected_date, previous_date)
# 将DataFrame转换为字典列表
promotion_list = promotion_rates.to_dict('records')
# 每行显示3个
for i in range(0, len(promotion_list), 3):
cols = st.columns(3)
group = promotion_list[i:i + 3]
for j in range(len(group)):
with cols[j]:
item = group[j]
# 使用卡片式布局
st.markdown(f"""
{item['连板数']}
晋级率: {item['晋级率']}
""", unsafe_allow_html=True)
# 显示股票列表
if not item['股票列表'].empty:
for _, stock in item['股票列表'].iterrows():
concept = stock[f'涨停原因类别[{selected_date.strftime("%Y%m%d")}]']
st.markdown(f"""
{stock['股票简称']}
{concept}
""", unsafe_allow_html=True)
st.markdown(" ", unsafe_allow_html=True)
if __name__ == "__main__":
st.set_page_config(layout="wide")
app()