社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  chatgpt

前沿分享丨陶哲轩:感谢ChatGPT,4小时独立完成了一个开源项目

中国人工智能学会 • 昨天 • 4 次点击  
转自 机器之心

这个五一假期,世界顶级数学家是如何度过的?


菲尔兹奖得主陶哲轩,似乎是忙着发布自己的开源项目:「我在大模型的协助下编写了一个概念验证软件工具,用于验证涉及任意正参数的给定估计是否成立(在常数因子范围内)。」


截屏2025-05-06 09.29.29.png


项目地址:https://github.com/teorth/estimates


在这个项目中,陶哲轩开发了一个用于自动(或半自动)证明分析中估计值的框架。估计值是 X≲Y(在渐近记法中表示 X=O (Y))或 X≪Y(在渐近符号中表示 X=o (Y))形式的不等式。


为什么要做这样一个工具?这就要从近期陶哲轩和 Bjoern Bringmann(陶哲轩曾经的博士生,现为普林斯顿大学助理教授)的讨论说起。


对于代数、微积分和数值分析等领域的许多数学任务来说,符号数学软件包已经非常「发达」了。但目前还没有类似的复杂工具来验证渐近估计 —— 在损失不变的情况下,对于任意大的参数都应该成立的不等式。尤其重要的是函数估计,其中参数涉及一个未知函数或序列(存在于某个合适的函数空间,如一个空间)。


陶哲轩将二人的讨论结果写成了一篇博客,重点讨论了更简单的渐近估计情况,即涉及有限数量的正实数,并使用加、乘、除、指数、最小值和最大值(但不包括减法)等算术运算进行组合。


「我过去曾希望能有一个工具能够自动判断此类估计是否成立(如果成立,则提供证明;如果不成立,则提供渐近反例)。」


现在,这个心愿实现了。


我们都知道,陶哲轩非常爱好使用大模型来辅助解决数学问题。过去的大多数情况是完成比较简单的编码任务,例如计算然后绘制一些稍微复杂的数学函数,或者对某些数据集进行一些基本的数据分析。


这次,他决定给自己一个更具挑战性的任务:编写一个可以处理上述形式不等式的验证器。


举个例子,一个典型的不等式可能是弱算术平均 - 几何平均不等式。



其中 abc 是任意正实数,这里的表示我们愿意在估计中丢失一个未指定的(乘性)常数。


原则上,这类形式的简单不等式可以通过强力的案例拆分自动解决。单个这类的不等式都不太难手工求解,但有些应用需要检验大量这样的不等式,或者将其拆分成大量案例。这项任务似乎非常适合自动化,尤其是在现代技术的帮助下。


陶哲轩这次用到的 AI 工具仍然是 ChatGPT。经过大约四个小时的编程,在大模型的频繁协助下,他顺利做出了一个概念验证工具。


与此同时,陶哲轩还放出了与 ChatGPT 的对话过程,不难发现,对话过程还是蛮长的。


链接:https://chatgpt.com/share/68143a97-9424-800e-b43a-ea9690485bd8


一开始,陶哲轩就对 ChatGPT 提出了自己的需求:「我想编写一些 Python 类来操作符号表达式。并且希望有一个表示变量的类,比如 x、y、z…… 你能帮我编写一些具有这种功能的基础类来入门吗?」


image.png


ChatGPT 思考了 6 秒钟就给出了答案。


image.png


这一步完成之后,下一轮对话开始,陶哲轩接着追问「我看到你用 add 实现了 + 操作,真棒。那么,实现 * 和 / 的对应方法是什么呢?」


ChatGPT 也给出了回答:


image.png


在整个过程中,陶哲轩不断询问,ChatGPT 也做到了有问必答,不管是简单的问题,还是复杂的问题,ChatGPT 都给解决了:


image.png


「如何在与当前 python 文件相同的目录下导入 python 文件?」


image.png


最终,在 ChatGPT 的大力协助下,陶哲轩完成了这个概念验证软件工具。


其实,在众多知名数学家中,陶哲轩是较早接受并发现 ChatGPT 这类 AI 大模型数学价值的一个。他曾预测「如果使用得当,到 2026 年,AI 将成为数学研究和许多其他领域值得信赖的合著者。」


陶哲轩不止一次借助大模型进行研究,他曾在 GPT-4 的帮助下成功解决了一个数学证明题(GPT4 提出了 8 种方法,其中 1 种成功解决了问题),还在 AI 的帮助下发现了自己论文中的一处隐藏 bug。


image.png


陶哲轩还建议大家如果想要开发这类软件,最好是数学家与专业程序员以协作的方式进行,这样才能优势互补。


「这当然是一个极其不优雅的证明,但优雅并非重点,重点在于它是自动化的。」


回顾整个过程,我们可以从陶哲轩的经历中得到一些启发,对大模型的开发使用,或许只是冰山一角,更多的功能等着大家去解锁。


参考链接:

https://terrytao.wordpress.com/2025/05/01/a-proof-of-concept-tool-to-verify-estimates/


【免责声明】转载出于非商业性的教育和科研目的,只为学术新闻信息的传播,版权归原作者所有,如有侵权请立即与我们联系,我们将及时删除。


图片

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/181916
 
4 次点击