%%time from pytabkit import RealMLP_HPO_Classifier n_hyperopt_steps=3# 用于演示的步骤数 model=RealMLP_HPO_Classifier(n_hyperopt_steps=n_hyperopt_steps) model.fit(X_train, y_train) # 进行预测并评估准确率 y_pred=model.predict(X_test) acc=accuracy_score(y_test, y_pred) print(f"Accuracy of RealMLP with {n_hyperopt_steps} steps HPO: {acc}")
预期输出:
Accuracy of RealMLP with 3 steps HPO: 0.8605333333333334
比较调优后默认参数(TD)与原始默认参数(D)的性能差异:
%%time from pytabkit import ( CatBoost_TD_Classifier, CatBoost_D_Classifier, LGBM_TD_Classifier, LGBM_D_Classifier, XGB_TD_Classifier, XGB_D_Classifier ) # 评估多种树模型 for model in [CatBoost_TD_Classifier(), CatBoost_D_Classifier(), LGBM_TD_Classifier(), LGBM_D_Classifier(), XGB_TD_Classifier(), XGB_D_Classifier()]: model.fit(X_train, y_train) y_pred=model.predict(X_test) acc=accuracy_score(y_test, y_pred) print(f"Accuracy of {model.__class__.__name__}: {acc}")
预期输出:
Accuracy of CatBoost_TD_Classifier: 0.8685333333333334 Accuracy of CatBoost_D_Classifier: 0.8464 Accuracy of LGBM_TD_Classifier: 0.8602666666666666 Accuracy of LGBM_D_Classifier: 0.8344 Accuracy of XGB_TD_Classifier: 0.8544 Accuracy of XGB_D_Classifier: 0.8472
通过集成多种优化模型可构建高性能预测基线:
%%time from pytabkit import Ensemble_TD_Classifier # 训练集成模型 model=Ensemble_TD_Classifier() model.fit(X_train, y_train) # 进行预测并评估准确率 y_pred=model.predict(X_test) acc=accuracy_score(y_test, y_pred) print(f"Accuracy of Ensemble_TD_Classifier: {acc}")
预期输出:
Accuracy of Ensemble_TD_Classifier: 0.8962666666666667