Py学习  »  机器学习算法

机器学习学术速递[11.12] na

arXiv每日学术速递 • 1 周前 • 128 次点击  

点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.LG 方向,今日共计170篇


大模型相关(21篇)

【1】Training Language Models to Explain Their Own Computations
标题:训练语言模型来解释自己的计算
链接:https://arxiv.org/abs/2511.08579

作者:Belinda Z. Li, Zifan Carl Guo, Vincent Huang, Jacob Steinhardt, Jacob Andreas
备注:33 pages, 7 tables, 8 figures


【2】Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models
标题:难思考:选择性潜在迭代以改进推理语言模型
链接:https://arxiv.org/abs/2511.08577

作者:Tianyu Fu, Yichen You, Zekai Chen, Guohao Dai, Huazhong Yang, Yu Wang


【3】SPEAR-MM: Selective Parameter Evaluation and Restoration via Model Merging for Efficient Financial LLM Adaptation
标题:SPEAR-MM:通过模型合并进行选择性参数评估和恢复,以实现高效的金融LLM适应
链接:https://arxiv.org/abs/2511.08500

作者:Berkcan Kapusuzoglu, Supriyo Chakraborty, Renkun Ni, Stephen Rawls, Sambit Sahu


【4】Anatomy-VLM: A Fine-grained Vision-Language Model for Medical Interpretation
标题:Anatomy-VLM:一种用于医学解释的细粒度视觉语言模型
链接:https://arxiv.org/abs/2511.08402

作者:Difei Gu, Yunhe Gao, Mu Zhou, Dimitris Metaxas
备注:Accepted to Winter Conference on Applications of Computer Vision (WACV) 2026


【5】Interaction Dynamics as a Reward Signal for LLMs
标题:交互动力学作为LLM的奖励信号
链接:https://arxiv.org/abs/2511.08394

作者:Sian Gooding, Edward Grefenstette


【6】SOM Directions are Better than One: Multi-Directional Refusal Suppression in Language Models
标题:SOM方向比一个好:语言模型中的多方向拒绝抑制
链接:https://arxiv.org/abs/2511.08379

作者:Giorgio Piras, Raffaele Mura, Fabio Brau, Luca Oneto, Fabio Roli, Battista Biggio
备注:Accepted at AAAI 2026


【7】AgentPRM: Process Reward Models for LLM Agents via Step-Wise Promise and Progress
标题:AgentPRM:通过分步承诺和进步为LLM代理提供流程奖励模型
链接:https://arxiv.org/abs/2511.08325

作者:Zhiheng Xi, Chenyang Liao, Guanyu Li, Yajie Yang, Wenxiang Chen, Zhihao Zhang, Binghai Wang, Senjie Jin, Yuhao Zhou, Jian Guan, Wei Wu, Tao Ji, Tao Gui, Qi Zhang, Xuanjing Huang
备注:Preprint


【8】Evaluating Gemini LLM in Food Image-Based Recipe and Nutrition Description with EfficientNet-B4 Visual Backbone
标题:使用EfficientNet-B4视觉主干评估基于食品图像的食谱和营养描述中的Gemini LLM
链接:https://arxiv.org/abs/2511.08215

作者:Rizal Khoirul Anam


【9】Prudential Reliability of Large Language Models in Reinsurance: Governance, Assurance, and Capital Efficiency
标题:再保险中大型语言模型的审慎可靠性:治理、保证和资本效率
链接:https://arxiv.org/abs/2511.08082

作者:Stella C. Dong
备注:48 pages, 9 figures, 5 tables. Submitted to the Journal of Risk and Insurance (JRI), November 2025


【10】DynaAct: Large Language Model Reasoning with Dynamic Action Spaces
标题:DynaAct:具有动态动作空间的大型语言模型推理
链接:https://arxiv.org/abs/2511.08043

作者:Xueliang Zhao, Wei Wu, Jian Guan, Qintong Li, Lingpeng Kong
备注:Accepted to NeurIPS 2025


【11】Low-Rank Curvature for Zeroth-Order Optimization in LLM Fine-Tuning
标题:LLM微调中零阶优化的低阶弯曲
链接:https://arxiv.org/abs/2511.07971

作者:Hyunseok Seung, Jaewoo Lee, Hyunsuk Ko
备注:Accepted to the AAAI Conference on Artificial Intelligence (AAAI-2026)


【12】Data Descriptions from Large Language Models with Influence Estimation
标题:具有影响力估计的大型语言模型的数据描述
链接:https://arxiv.org/abs/2511.07897

作者:Chaeri Kim, Jaeyeon Bae, Taehwan Kim


【13】Probabilities Are All You Need: A Probability-Only Approach to Uncertainty Estimation in Large Language Models
标题:概率就是你所需要的一切:大型语言模型中不确定性估计的纯概率方法
链接:https://arxiv.org/abs/2511.07694

作者:Manh Nguyen, Sunil Gupta, Hung Le


【14】Private-RAG: Answering Multiple Queries with LLMs while Keeping Your Data Private
标题:Private-RAG:通过LLM服务多个收件箱,同时保持您的数据保密
链接:https://arxiv.org/abs/2511.07637

作者:Ruihan Wu, Erchi Wang, Zhiyuan Zhang, Yu-Xiang Wang


【15】LLM Output Drift: Cross-Provider Validation & Mitigation for Financial Workflows
标题:LLM输出漂移:金融工作流的跨提供商验证和缓解
链接:https://arxiv.org/abs/2511.07585

作者:Raffi Khatchadourian, Rolando Franco
备注:11 pages, 5 figures. To appear in AI4F @ ACM ICAIF '25, November 15-18, 2025, Singapore


【16】SCALAR: Benchmarking SAE Interaction Sparsity in Toy LLMs
标题:SCAlar:玩具LLC中的SAS交互稀疏性基准
链接:https://arxiv.org/abs/2511.07572

作者:Sean P. Fillingham, Andrew Gordon, Peter Lai, Xavier Poncini, David Quarel, Stefan Heimersheim


【17】Beyond Correctness: Confidence-Aware Reward Modeling for Enhancing Large Language Model Reasoning
标题:超越正确性:增强大型语言模型推理的信任感知奖励建模
链接:https://arxiv.org/abs/2511.07483

作者:Qianxi He, Qingyu Ren, Shanzhe Lei, Xuhong Wang, Yingchun Wang


【18】Alignment-Constrained Dynamic Pruning for LLMs: Identifying and Preserving Alignment-Critical Circuits
标题:LLM的对准约束动态修剪:识别和保留对准关键电路
链接:https://arxiv.org/abs/2511.07482

作者 :Dev Patel, Gabrielle Gervacio, Diekola Raimi, Kevin Zhu, Ryan Lagasse, Gabriel Grand, Ashwinee Panda, Maheep Chaudhary


【19】Comparing Reconstruction Attacks on Pretrained Versus Full Fine-tuned Large Language Model Embeddings on Homo Sapiens Splice Sites Genomic Data
标题:比较对预训练的重建攻击与嵌入智人拼接位点基因组数据的完全微调大语言模型的重建攻击
链接:https://arxiv.org/abs/2511.07481

作者:Reem Al-Saidi, Erman Ayday, Ziad Kobti


【20】REFLEX: Reference-Free Evaluation of Log Summarization via Large Language Model Judgment
标题:RECFLEX:通过大型语言模型判断对日志总结进行无参考评估
链接:https://arxiv.org/abs/2511.07458

作者:Priyanka Mudgal
备注:Accepted at IEEE-ICETISI 2025


【21】Synera: Synergistic LLM Serving across Device and Cloud at Scale
标题:Synera:跨设备和云大规模服务的协同LLM
链接:https://arxiv.org/abs/2511.07423

作者:Genglin Wang, Liekang Zeng, Bufang Yang, Kaiwei Liu, Guoliang Xing, Chumin Sun, Li Zhou, Jie Sun, Zhenyu Yan


Graph相关(图学习|图神经网络|图优化等)(10篇)

【1】ARAC: Adaptive Regularized Multi-Agent Soft Actor-Critic in Graph-Structured Adversarial Games
标题:ARAC:图结构对抗游戏中的自适应正规化多智能体软演员评论家
链接:https://arxiv.org/abs/2511.08412

作者:Ruochuan Shi, Runyu Lu, Yuanheng Zhu, Dongbin Zhao


【2】BDD2Seq: Enabling Scalable Reversible-Circuit Synthesis via Graph-to-Sequence Learning
标题:BDD 2Seq:通过图形到序列学习实现可扩展的可逆电路合成
链接:https://arxiv.org/abs/2511.08315

作者:Mingkai Miao, Jianheng Tang, Guangyu Hu, Hongce Zhang


【3】Dual-Kernel Graph Community Contrastive Learning
标题:双核图社区对比学习
链接:https://arxiv.org/abs/2511.08287

作者:Xiang Chen, Kun Yue, Wenjie Liu, Zhenyu Zhang, Liang Duan


【4】Improving Long-Range Interactions in Graph Neural Simulators via Hamiltonian Dynamics
标题:通过Hamilton动力学改善图神经模拟器中的远程交互
链接:https://arxiv.org/abs/2511.08185

作者:Tai Hoang, Alessandro Trenta, Alessio Gravina, Niklas Freymuth, Philipp Becker, Davide Bacciu, Gerhard Neumann
备注:31 pages, including the appendix


【5】Stuart-Landau Oscillatory Graph Neural Network
标题:Stuart-Landau振荡图神经网络
链接:https://arxiv.org/abs/2511.08094

作者:Kaicheng Zhang, David N. Reynolds, Piero Deidda, Francesco Tudisco


【6】Generalizable Insights for Graph Transformers in Theory and Practice
标题:图形变换器在理论和实践中的可推广见解
链接:https://arxiv.org/abs/2511.08028

作者:Timo Stoll, Luis Müller, Christopher Morris
备注:Accepted at NeurIPS 2025 as spotlight


【7】Global Optimization on Graph-Structured Data via Gaussian Processes with Spectral Representations
标题:通过具有谱表示的高斯过程对图结构数据进行全局优化
链接:https://arxiv.org/abs/2511.07734

作者:Shu Hong, Yongsheng Mei, Mahdi Imani, Tian Lan


【8】Adaptive Graph Learning with Transformer for Multi-Reservoir Inflow Prediction
标题:基于Transformer器的自适应图学习方法在水库群入库流量预测中的应用
链接:https://arxiv.org/abs/2511.07649

作者:Pengfei Hu, Ming Fan, Xiaoxue Han, Chang Lu, Wei Zhang, Hyun Kang, Yue Ning, Dan Lu
备注:ICDM 2025 DMESS Workshop


【9】One Router to Route Them All: Homogeneous Expert Routing for Heterogeneous Graph Transformers
标题:一个路由器来路由所有路由器:用于异类图变换器的同质专家路由
链接:https://arxiv.org/abs/2511.07603

作者:Georgiy Shakirov, Albert Arakelov
备注:14 pages, 4 figures; 2 tables; work in progress, feedback welcome


【10】Counterfactual Forecasting of Human Behavior using Generative AI and Causal Graphs
标题:使用生成人工智能和因果图对人类行为进行反事实预测
链接:https://arxiv.org/abs/2511.07484

作者:Dharmateja Priyadarshi Uddandarao, Ravi Kiran Vadlamani


Transformer(5篇)

【1】EMAformer: Enhancing Transformer through Embedding Armor for Time Series Forecasting
标题:EMAformer:通过嵌入时间序列预测装甲来增强Transformer
链接:https://arxiv.org/abs/2511.08396

作者:Zhiwei Zhang, Xinyi Du, Xuanchi Guo, Weihao Wang, Wenjuan Han
备注:14 pages, 9 figures, 6 tables, accepted by AAAI2026


【2】A Unified Geometric Field Theory Framework for Transformers: From Manifold Embeddings to Kernel Modulation
标题:Transformer的统一几何场论框架:从总管嵌入到核调制
链接:https://arxiv.org/abs/2511.08243

作者:Xianshuai Shi, Jianfeng Zhu, Leibo Liu


【3】SpikCommander: A High-performance Spiking Transformer with Multi-view Learning for Efficient Speech Command Recognition
标题:SpikCommander:一款高性能Spiking Transformer,具有多视图学习功能,用于高效的语音命令识别
链接:https://arxiv.org/abs/2511.07883

作者:Jiaqi Wang, Liutao Yu, Xiongri Shen, Sihang Guo, Chenlin Zhou, Leilei Zhao, Yi Zhong, Zhengyu Ma, Zhiguo Zhang
备注:Accepted by The Fortieth AAAI Conference on Artificial Intelligence (AAAI 2026)


【4】ZeroSim: Zero-Shot Analog Circuit Evaluation with Unified Transformer Embeddings
标题:ZeroSim:采用统一Transformer嵌入式的零冲击模拟电路评估
链接:https://arxiv.org/abs/2511.07658

作者:Xiaomeng Yang, Jian Gao, Yanzhi Wang, Xuan Zhang
备注:Accepted by ICCAD 2025


【5】Galactification: painting galaxies onto dark matter only simulations using a transformer-based model
标题:银河化:仅使用基于Transformer的模型将星系绘制到暗物质上模拟
链接:https://arxiv.org/abs/2511.08438

作者:Shivam Pandey, Christopher C. Lovell, Chirag Modi, Benjamin D. Wandelt
备注:8 pages, 4 figures. , accepted at Machine Learning and the Physical Sciences Workshop at NeurIPS 2025


GAN|对抗|攻击|生成相关(6篇)

【1】Adversarial Bias: Data Poisoning Attacks on Fairness
标题:对抗偏见:对公平性的数据毒害攻击
链接:https://arxiv.org/abs/2511.08331

作者:Eunice Chan, Hanghang Tong
备注:15 pages, 9 figures, shortened version in BigData 2025


【2】Hierarchical Structure-Property Alignment for Data-Efficient Molecular Generation and Editing
标题:分层结构-性质对齐实现数据高效的分子生成和编辑
链接:https://arxiv.org/abs/2511.08080

作者:Ziyu Fan, Zhijian Huang, Yahan Li, Xiaowen Hu, Siyuan Shen, Yunliang Wang, Zeyu Zhong, Shuhong Liu, Shuning Yang, Shangqian Wu, Min Wu, Lei Deng


【3】Class-feature Watermark: A Resilient Black-box Watermark Against Model Extraction Attacks
标题:类特征水印:一种抗模型抽取攻击的弹性黑箱水印
链接:https://arxiv.org/abs/2511.07947

作者:Yaxin Xiao, Qingqing Ye, Zi Liang, Haoyang Li, RongHua Li, Huadi Zheng, Haibo Hu
备注:Accepted by AAAI'26


【4】MURPHY: Multi-Turn GRPO for Self Correcting Code Generation
标题:MURPHY:用于自纠正代码生成的多圈GRPO
链接:https://arxiv.org/abs/2511.07833

作者:Chanakya Ekbote, Vijay Lingam, Behrooz Omidvar-Tehrani, Jun Huan, Sujay Sanghavi, Anoop Deoras, Stefano Soatto
备注:20 pages, 2 figures, 6 Tables


【5】Diffusion Guided Adversarial State Perturbations in Reinforcement Learning
标题:强化学习中的扩散引导对抗状态扰动
链接:https://arxiv.org/abs/2511.07701

作者:Xiaolin Sun, Feidi Liu, Zhengming Ding, ZiZhan Zheng


【6】PrAda-GAN: A Private Adaptive Generative Adversarial Network with Bayes Network Structure
标题:PrAda-GAN:一个具有Bayes网络结构的私有自适应生成对抗网络
链接:https://arxiv.org/abs/2511.07997

作者:Ke Jia, Yuheng Ma, Yang Li, Feifei Wang


半/弱/无/有监督|不确定性|主动学习(5篇)

【1】LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
标题:LeJEPA:无需启发式即可证明和可扩展的自我监督学习
链接:https://arxiv.org/abs/2511.08544

作者:Randall Balestriero, Yann LeCun


【2】Uncertainty Calibration of Multi-Label Bird Sound Classifiers
标题:多标签鸟声分类器的不确定度校准
链接:https://arxiv.org/abs/2511.08261

作者:Raphael Schwinger, Ben McEwen, Vincent S. Kather, René Heinrich, Lukas Rauch, Sven Tomforde
备注:Under review at ICAART 2026


【3】IBMA: An Imputation-Based Mixup Augmentation Using Self-Supervised Learning for Time Series Data
标题:IBMA:一种基于输入的混合增强,使用时间序列数据的自我监督学习
链接:https://arxiv.org/abs/2511.07930

作者:Dang Nha Nguyen, Hai Dang Nguyen, Khoa Tho Anh Nguyen
备注:9 pages, 1 figure, 1 table, accepted at the AAAI2025 conference


【4】SERL: Self-Examining Reinforcement Learning on Open-Domain
标题:SERL:开放领域上的自我审视强化学习
链接:https://arxiv.org/abs/2511.07922

作者:Weixuan Ou, Yanzhao Zheng, Shuoshuo Sun, Wei Zhang, Baohua Dong, Hangcheng Zhu, Ruohui Huang, Gang Yu, Pengwei Yan, Yifan Qiao


【5】Semi-Supervised Treatment Effect Estimation with Unlabeled Covariates via Generalized Riesz Regression
标题:通过广义Riesz回归进行具有未标记协变量的半监督治疗效果估计
链接:https://arxiv.org/abs/2511.08303

作者:Masahiro Kato


迁移|Zero/Few/One-Shot|自适应(1篇)

【1】Boomda: Balanced Multi-objective Optimization for Multimodal Domain Adaptation
标题:Boomda:多峰领域适应的平衡多目标优化
链接:https://arxiv.org/abs/2511.08152

作者:Jun Sun, Xinxin Zhang, Simin Hong, Jian Zhu, Xiang Gao


强化学习(6篇)

【1】LPPG-RL: Lexicographically Projected Policy Gradient Reinforcement Learning with Subproblem Exploration
标题:LPPG-RL:带子问题探索的词典规划策略梯度强化学习
链接:https://arxiv.org/abs/2511.08339

作者:Ruiyu Qiu, Rui Wang, Guanghui Yang, Xiang Li, Zhijiang Shao


【2】Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
标题:动态稀疏性:机器人强化学习基准中学习世界模型的常见稀疏性假设
链接:https://arxiv.org/abs/2511.08086

作者:Muthukumar Pandaram, Jakob Hollenstein, David Drexel, Samuele Tosatto, Antonio Rodríguez-Sánchez, Justus Piater


【3】Test-driven Reinforcement Learning
标题:测试驱动的强化学习
链接:https://arxiv.org/abs/2511.07904

作者:Zhao Yu, Xiuping Wu, Liangjun Ke
备注:AAAI 2026 oral


【4】Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning
标题:可扩展目标条件强化学习的多步准度量学习
链接:https://arxiv.org/abs/2511.07730

作者:Bill Chunyuan Zheng, Vivek Myers, Benjamin Eysenbach, Sergey Levine


【5】Shocks Under Control: Taming Transonic Compressible Flow over an RAE2822 Airfoil with Deep Reinforcement Learning
标题:激波在控制之下:用深度强化学习驯服RAE2822翼型上的跨音速可压缩流
链接:https://arxiv.org/abs/2511.07564

作者:Trishit Mondal, Ricardo Vinuesa, Ameya D. Jagtap
备注:23 pages, 18 figures


【6】RL-Exec: Impact-Aware Reinforcement Learning for Opportunistic Optimal Liquidation, Outperforms TWAP and a Book-Liquidity VWAP on BTC-USD Replays
标题:RL-Exec:针对随机最优清算的影响感知强化学习,在BTC-USD回放上优于TWAP和图书流动性VWAP
链接:https://arxiv.org/abs/2511.07434

作者:Enzo Duflot, Stanislas Robineau
备注:8 pages main text, 3 appendix pages, 10 figures


元学习(1篇)

【1】Meta-cognitive Multi-scale Hierarchical Reasoning for Motor Imagery Decoding
标题:运动意象解码的元认知多尺度分层推理
链接:https://arxiv.org/abs/2511.07884

作者:Si-Hyun Kim, Heon-Gyu Kwak, Byoung-Hee Kwon, Seong-Whan Lee
备注:4 pages, 1 figures, 1 table, Name of Conference: International Winter Conference on Brain-Computer Interface


符号|符号学习(1篇)

【1】Identification of Empirical Constitutive Models for Age-Hardenable Aluminium Alloy and High-Chromium Martensitic Steel Using Symbolic Regression
标题:利用符号回归识别可硬化铝合金和高铬马铁钢的经验本构模型
链接:https://arxiv.org/abs/2511.08424

作者:Evgeniya Kabliman, Gabriel Kronberger
备注:Accepted for publication in Special Issue on Symbolic Regression of the Philosphical Transactions of the Royal Society - Part A


医学相关(3篇)

【1】SENCA-st: Integrating Spatial Transcriptomics and Histopathology with Cross Attention Shared Encoder for Region Identification in Cancer Pathology
标题:SENCA-st:将空间转录组学和组织病理学与交叉注意共享编码器集成,用于癌症病理中的区域识别
链接:https://arxiv.org/abs/2511.08573

作者:Shanaka Liyanaarachchi, Chathurya Wijethunga, Shihab Aaquil Ahamed, Akthas Absar, Ranga Rodrigo
备注:Accepted at WACV 2026


【2】Data-Driven Discovery of Feature Groups in Clinical Time Series
标题:数据驱动的临床时间序列特征组发现
链接:https://arxiv.org/abs/2511.08260

作者:Fedor Sergeev, Manuel Burger, Polina Leshetkina, Vincent Fortuin, Gunnar Rätsch, Rita Kuznetsova
备注:Machine Learning for Health (ML4H) 2025 in Proceedings of Machine Learning Research 297


【3】On the Role of Calibration in Benchmarking Algorithmic Fairness for Skin Cancer Detection
标题:关于校准在皮肤癌检测心电图公平性基准中的作用
链接:https://arxiv.org/abs/2511.07700

作者:Brandon Dominique, Prudence Lam, Nicholas Kurtansky, Jochen Weber, Kivanc Kose, Veronica Rotemberg, Jennifer Dy
备注:19 pages, 4 figures. Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) this https URL


蒸馏|知识提取(1篇)

【1】CNN-Based Automated Parameter Extraction Framework for Modeling Memristive Devices
标题:基于CNN的记忆器件建模自动参数提取框架
链接:https://arxiv.org/abs/2511.07926

作者:Akif Hamid, Orchi Hassan


推荐(1篇)

【1】Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
标题:保护隐私的教育个性化:学生表现预测的联邦推荐系统
链接:https://arxiv.org/abs/2509.10516

作者:Rodrigo Tertulino, Ricardo Almeida


聚类(1篇)

【1】Clustering Guided Residual Neural Networks for Multi-Tx Localization in Molecular Communications
标题:分子通信中用于多发射定位的集群引导剩余神经网络
链接:https://arxiv.org/abs/2511.08513

作者:Ali Sonmez, Erencem Ozbey, Efe Feyzi Mantaroglu, H. Birkan Yilmaz
备注:5 pages, 4 figures, 3 tables


自动驾驶|车辆|车道检测等(2篇)

【1】Revisiting Network Traffic Analysis: Compatible network flows for ML models
标题:重温网络流量分析:ML模型的兼容网络流
链接:https://arxiv.org/abs/2511.08345

作者:João Vitorino, Daniela Pinto, Eva Maia, Ivone Amorim, Isabel Praça
备注:16 pages, 12 tables, 1 figure, FPS 2025 conference


【2】A Ranking-Based Optimization Algorithm for the Vehicle Relocation Problem in Car Sharing Services
标题:汽车共享服务中车辆搬迁问题的基于排名的优化算法
链接:https://arxiv.org/abs/2511.07724

作者:Piotr Szwed, Paweł Skrzynski, Jarosław Wąs


联邦学习|隐私保护|加密(5篇)

【1】FedPoP: Federated Learning Meets Proof of Participation
标题:FedPoP:联邦学习满足参与证明
链接:https://arxiv.org/abs/2511.08207

作者:Devriş İşler (IMDEA Networks Institute - Universidad Carlos III de Madrid), Elina van Kempen (University of California, Irvine), Seoyeon Hwang (Stealth Software Technologies Inc.), Nikolaos Laoutaris (IMDEA Networks Institute)
备注:This version is currently under review


【2】BIPPO: Budget-Aware Independent PPO for Energy-Efficient Federated Learning Services
标题:BIPPO:预算感知的独立PPO,用于节能的联合学习服务
链接:https://arxiv.org/abs/2511.08142

作者:Anna Lackinger, Andrea Morichetta, Pantelis A. Frangoudis, Schahram Dustdar
备注:This work has been submitted to the IEEE for possible publication


【3】Foam Segmentation in Wastewater Treatment Plants: A Federated Learning Approach with Segment Anything Model 2
标题:废水处理厂中的泡沫分割:带有Segment Anything模型2的联邦学习方法
链接:https://arxiv.org/abs/2511.08130

作者:Mehmet Batuhan Duman, Alejandro Carnero, Cristian Martín, Daniel Garrido, Manuel Díaz
备注:36 pages, 14 figures, 3 tables, 4 algorithms. This work is part of the Zerovision project. Code available at: this https URL


【4】Towards Personalized Quantum Federated Learning for Anomaly Detection
标题:迈向用于异常检测的个性化量子联邦学习
链接:https://arxiv.org/abs/2511.07471

作者:Ratun Rahman, Sina Shaham, Dinh C. Nguyen
备注:Accepted at IEEE Transactions on Network Science and Engineering


【5】Evaluating Federated Learning for At-Risk Student Prediction: A Comparative Analysis of Model Complexity and Data Balancing
标题:评估联邦学习以预测高危学生:模型复杂性和数据平衡的比较分析
链接:https://arxiv.org/abs/2508.18316

作者:Rodrigo Tertulino, Ricardo Almeida
备注:This article has been prepared to be submitted to the Fundamenta Informaticae Journal


推理|分析|理解|解释(8篇)

【1】Test-time Diverse Reasoning by Riemannian Activation Steering
标题:通过Riemann激活引导进行测试时多元化推理
链接:https://arxiv.org/abs/2511.08305

作者:Ly Tran Ho Khanh, Dongxuan Zhu, Man-Chung Yue, Viet Anh Nguyen
备注:19 pages, 6 figures. Accepted for publication at AAAI 2026 (40th AAAI Conference on Artificial Intelligence)


【2】Real-Time Performance Analysis of Multi-Fidelity Residual Physics-Informed Neural Process-Based State Estimation for Robotic Systems
标题:机器人系统多保真剩余物理信息神经过程状态估计的实时性能分析
链接:https://arxiv.org/abs/2511.08231

作者:Devin Hunter, Chinwendu Enyioha
备注:8 pages, 5 figures


【3】PRISM: Privacy-preserving Inference System with Homomorphic Encryption and Modular Activation
标题:PRism:具有同形加密和模块激活的隐私保护推理系统
链接:https://arxiv.org/abs/2511.07807

作者:Zeinab Elkhatib, Ali Sekmen, Kamrul Hasan


【4】Enhancing Binary Encoded Crime Linkage Analysis Using Siamese Network
标题:使用连体网络增强二进制编码犯罪联系分析
链接:https://arxiv.org/abs/2511.07651

作者:Yicheng Zhan, Fahim Ahmed, Amy Burrell, Matthew J. Tonkin, Sarah Galambos, Jessica Woodhams, Dalal Alrajeh
备注:AAAI 2026, 7 pages, 4 figures


【5】Methodological Precedence in Health Tech: Why ML/Big Data Analysis Must Follow Basic Epidemiological Consistency. A Case Study
标题:卫生技术中的方法论优先:为什么ML/大数据分析必须遵循基本的流行病学一致性。为例
链接:https://arxiv.org/abs/2511.07500

作者:Marco Roccetti
备注:2 Tables; ML/Big data paper on medical data


【6】From Hubs to Deserts: Urban Cultural Accessibility Patterns with Explainable AI
标题:从中心到沙漠:具有可解释人工智能的城市文化无障碍模式
链接:https://arxiv.org/abs/2511.07475

作者:Protik Bose Pranto, Minhazul Islam, Ripon Kumar Saha, Abimelec Mercado Rivera, Namig Abbasov


【7】Robust Experimental Design via Generalised Bayesian Inference
标题:通过广义Bayesian推理的稳健实验设计
链接:https://arxiv.org/abs/2511.07671

作者:Yasir Zubayr Barlas, Sabina J. Sloman, Samuel Kaski
备注:12 main pages, 43 pages in total


【8】EvoPS: Evolutionary Patch Selection for Whole Slide Image Analysis in Computational Pathology
标题:EvoPS:计算病理学中整片图像分析的进化补丁选择
链接:https://arxiv.org/abs/2511.07560

作者:Saya Hashemian, Azam Asilian Bidgoli


检测相关(3篇)

【1】Toward Autonomous and Efficient Cybersecurity: A Multi-Objective AutoML-based Intrusion Detection System
标题:迈向自主高效的网络安全:基于AutoML的多目标入侵检测系统
链接:https://arxiv.org/abs/2511.08491

作者:Li Yang, Abdallah Shami
备注:Accepted and To Appear in IEEE Transactions on Machine Learning in Communications and Networking (TMLCN); Code is available at Github link: this https URL


【2】Generalizable Blood Cell Detection via Unified Dataset and Faster R-CNN
标题:通过统一数据集和更快的R-CNN进行可推广的血细胞检测
链接:https://arxiv.org/abs/2511.08465

作者:Siddharth Sahay
备注:7 pages, 7 tables, 3 figures, 2 algorithms, Submitted for review at Next-Gen Quantum and Advanced Computing: Algorithms, Security, and Beyond (NQComp-2026)


【3】HybridGuard: Enhancing Minority-Class Intrusion Detection in Dew-Enabled Edge-of-Things Networks
标题:HybridGuard:增强Dew支持的边缘物联网中的少数类入侵检测
链接:https://arxiv.org/abs/2511.07793

作者:Binayak Kara, Ujjwal Sahua, Ciza Thomas, Jyoti Prakash Sahoo


分类|识别(3篇)

【1】One Model for All: Universal Pre-training for EEG based Emotion Recognition across Heterogeneous Datasets and Paradigms
标题:通用模型:跨异类数据集和范式的基于脑电的情绪识别的通用预训练
链接:https://arxiv.org/abs/2511.08444

作者:Xiang Li, You Li, Yazhou Zhang


【2】Speech Emotion Recognition with Phonation Excitation Information and Articulatory Kinematics
标题:利用发音兴奋信息和关节运动学的语音情感识别
链接:https://arxiv.org/abs/2511.07955

作者:Ziqian Zhang, Min Huang, Zhongzhe Xiao


【3】Optimizing Classification of Infrequent Labels by Reducing Variability in Label Distribution
标题:通过减少标签分布的变异性来优化罕见标签的分类
链接:https://arxiv.org/abs/2511.07459

作者:Ashutosh Agarwal
备注:Accepted and presented at 6th International Conference on Emerging research in electronics, computer science and technology ( ICERECT)


编码器(3篇)

【1】Physical Consistency of Aurora's Encoder: A Quantitative Study
标题:Aurora编码器的物理一致性:定量研究
链接:https://arxiv.org/abs/2511.07787

作者:Benjamin Richards, Pushpa Kumar Balan
备注:Accepted for poster presentation at the AICC: Workshop on AI for Climate and Conservation at EurIPS 2025


【2】CAE: Character-Level Autoencoder for Non-Semantic Relational Data Grouping
标题:CAE:用于非语义关系数据存储器的机器级自动编码器
链接:https://arxiv.org/abs/2511.07657

作者:Veera V S Bhargav Nunna, Shinae Kang, Zheyuan Zhou, Virginia Wang, Sucharitha Boinapally, Michael Foley


【3】Multivariate Variational Autoencoder
标题:多元变分自动编码器
链接:https://arxiv.org/abs/2511.07472

作者:Mehmet Can Yavuz


优化|敛散性(8篇)

【1】HardFlow: Hard-Constrained Sampling for Flow-Matching Models via Trajectory Optimization
标题:HardFlow:通过轨迹优化对流匹配模型进行硬约束采样
链接:https://arxiv.org/abs/2511.08425

作者:Zeyang Li, Kaveh Alim, Navid Azizan


【2】NeuCLIP: Efficient Large-Scale CLIP Training with Neural Normalizer Optimization
标题:NeuCLIP:具有神经规范化器优化的高效大规模CLIP训练
链接:https://arxiv.org/abs/2511.08417

作者:Xiyuan Wei, Chih-Jen Lin, Tianbao Yang
备注:20 pages, 4 figures


【3】Multi-objective Hyperparameter Optimization in the Age of Deep Learning
标题:深度学习时代的多目标超参数优化
链接:https://arxiv.org/abs/2511.08371

作者:Soham Basu, Frank Hutter, Danny Stoll


【4】Feedback Descent: Open-Ended Text Optimization via Pairwise Comparison
标题:反馈下降:通过成对比较进行开放式文本优化
链接:https://arxiv.org/abs/2511.07919

作者:Yoonho Lee, Joseph Boen, Chelsea Finn


【5】Hyperellipsoid Density Sampling: Exploitative Sequences to Accelerate High-Dimensional Optimization
标题:超球体密度采样:加速多维优化的利用性序列
链接:https://arxiv.org/abs/2511.07836

作者:Julian Soltes
备注:for Python implementation, see this https URL


【6】Intelligent Optimization of Multi-Parameter Micromixers Using a Scientific Machine Learning Framework
标题:基于科学机器学习框架的多参数微混合器智能优化
链接:https://arxiv.org/abs/2511.07702

作者:Meraj Hassanzadeh, Ehsan Ghaderi, Mohamad Ali Bijarchi, Siamak Kazemzadeh Hannani


【7】Source-Optimal Training is Transfer-Suboptimal
标题:来源最佳训练是转移次优
链接:https://arxiv.org/abs/2511.08401

作者:C. Evans Hedges


【8】An Information-Minimal Geometry for Qubit-Efficient Optimization
标题:量子比特高效优化的信息最小几何
链接:https://arxiv.org/abs/2511.08362

作者:Gordon Ma, Dimitris G. Angelakis
备注:39 pages, 9 figures


预测|估计(6篇)

【1】FMMI: Flow Matching Mutual Information Estimation
标题:FMMI:流量匹配互信息估计
链接:https://arxiv.org/abs/2511.08552

作者:Ivan Butakov, Alexander Semenenko, Alexey Frolov, Ivan Oseledets
备注:11 pages


【2】HN-MVTS: HyperNetwork-based Multivariate Time Series Forecasting
标题:HN-MVTS:基于超网络的多元时间序列预测
链接:https://arxiv.org/abs/2511.08340

作者:Andrey Savchenko, Oleg Kachan
备注:AAAI 2026


【3】Towards Non-Stationary Time Series Forecasting with Temporal Stabilization and Frequency Differencing
标题:具有时间稳定和频率差的非平稳时间序列预测
链接:https://arxiv.org/abs/2511.08229

作者:Junkai Lu, Peng Chen, Chenjuan Guo, Yang Shu, Meng Wang, Bin Yang


【4】Statistically Assuring Safety of Control Systems using Ensembles of Safety Filters and Conformal Prediction
标题:使用安全过滤器和保形预测组合统计保证控制系统的安全性
链接:https://arxiv.org/abs/2511.07899

作者:Ihab Tabbara, Yuxuan Yang, Hussein Sibai


【5】ViPRA: Video Prediction for Robot Actions
标题:ViTRA:机器人动作的视频预测
链接:https://arxiv.org/abs/2511.07732

作者:Sandeep Routray, Hengkai Pan, Unnat Jain, Shikhar Bahl, Deepak Pathak
备注:Website: this https URL


【6】FlowTIE: Flow-based Transport of Intensity Equation for Phase Gradient Estimation from 4D-STEM Data
标题:FlowTIE:基于流的强度方程传输,用于根据4D-STEM数据估计相梯度
链接:https://arxiv.org/abs/2511.07633

作者:Arya Bangun, Maximilian Töllner, Xuan Zhao, Christian Kübel, Hanno Scharr
备注:7 pages, 3 figures, Machine Learning and the Physical Sciences Workshop, NeurIPS 2025


其他神经网络|深度学习|模型|建模(30篇)

【1】SeFA-Policy: Fast and Accurate Visuomotor Policy Learning with Selective Flow Alignment
标题:SeFA-Policy:快速准确的可视化政策学习,具有选择性流程对齐
链接:https://arxiv.org/abs/2511.08583

作者:Rong Xue, Jiageng Mao, Mingtong Zhang, Yue Wang


【2】Automatic Grid Updates for Kolmogorov-Arnold Networks using Layer Histograms
标题:使用分层图自动更新Kolmogorov-Arnold网络的网格
链接:https://arxiv.org/abs/2511.08570

作者:Jamison Moody, James Usevitch


【3】Aligning by Misaligning: Boundary-aware Curriculum Learning for Multimodal Alignment
标题:通过错位来调整:多模式调整的边界感知课程学习
链接:https://arxiv.org/abs/2511.08399

作者:Hua Ye (1 and 2), Hang Ding (3), Siyuan Chen (4), Yiyang Jiang (5), Changyuan Zhang (6), Xuan Zhang (2 and 7) ((1) Nanjing University, (2) Airon Technology CO. LTD, (3) University of Bristol, (4) The Hong Kong Polytechnic University, (5) Shanghai Jiao Tong University, (6) The University of Hong Kong, (7) Carnegie Mellon University)
备注:24 pages, 6 figures, 5 tables. Submitted to NeurIPS 2025


【4】Extreme Model Compression with Structured Sparsity at Low Precision
标题:具有低精度结构稀疏性的极端模型压缩
链接:https://arxiv.org/abs/2511.08360

作者:Dan Liu, Nikita Dvornik, Xue Liu
备注:36th British Machine Vision Conference 2025


【5】Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
标题:利用子结构-取代-规则知情的框架提高分子性质回归模型的准确性和通用性
链接:https://arxiv.org/abs/2511.08314

作者:Xiaoyu Fan, Lin Guo, Ruizhen Jia, Yang Tian, Zhihao Yang, Boxue Tian


【6】X-IONet: Cross-Platform Inertial Odometry Network with Dual-Stage Attention
标题:X-IONet:具有双级关注的跨平台惯性里程计网络
链接:https://arxiv.org/abs/2511.08277

作者:Dehan Shen, Changhao Chen


【7】PrefPoE: Advantage-Guided Preference Fusion for Learning Where to Explore
标题:PrefPoE:学习在哪里探索的记忆引导偏好融合
链接:https://arxiv.org/abs/2511.08241

作者:Zhihao Lin, Lin Wu, Zhen Tian, Jianglin Lan


【8】The Online Patch Redundancy Eliminator (OPRE): A novel approach to online agnostic continual learning using dataset compression
标题:在线补丁冗余消除器(OPRI):一种使用数据集压缩进行在线不可知持续学习的新颖方法
链接 :https://arxiv.org/abs/2511.08226

作者:Raphaël Bayle, Martial Mermillod, Robert M. French


【9】Proof Minimization in Neural Network Verification
标题:神经网络验证中的证明最小化
链接:https://arxiv.org/abs/2511.08198

作者:Omri Isac, Idan Refaeli, Haoze Wu, Clark Barrett, Guy Katz
备注:This is a preprint version of the paper that appears at VMCAI 2026


【10】SafeMIL: Learning Offline Safe Imitation Policy from Non-Preferred Trajectories
标题:SafeMIL:从非首选轨迹学习离线安全模仿政策
链接:https://arxiv.org/abs/2511.08136

作者:Returaj Burnwal, Nirav Pravinbhai Bhatt, Balaraman Ravindran
备注:18 pages, AAAI 2026


【11】A robust methodology for long-term sustainability evaluation of Machine Learning models
标题:机器学习模型长期可持续性评估的稳健方法
链接:https://arxiv.org/abs/2511.08120

作者:Jorge Paz-Ruza, João Gama, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas


【12】An Integrated Fusion Framework for Ensemble Learning Leveraging Gradient Boosting and Fuzzy Rule-Based Models
标题:利用梯度提升和基于模糊规则的模型进行整体学习的集成融合框架
链接:https://arxiv.org/abs/2511.08077

作者:Jinbo Li, Peng Liu, Long Chen, Witold Pedrycz, Weiping Ding
备注:15 pages, 6 figures. IEEE Transactions on Artificial Intelligence (2024)


【13】From Sequential to Recursive: Enhancing Decision-Focused Learning with Bidirectional Feedback
标题:从顺序到循环:通过双向反馈增强以决策为中心的学习
链接:https://arxiv.org/abs/2511.08035

作者:Xinyu Wang, Jinxiao Du, Yiyang Peng, Wei Ma
备注:16 pages, 5 figures


【14】Continual Unlearning for Text-to-Image Diffusion Models: A Regularization Perspective
标题:文本到图像扩散模型的连续去学习:正则化观点
链接:https://arxiv.org/abs/2511.07970

作者:Justin Lee, Zheda Mai, Jinsu Yoo, Chongyu Fan, Cheng Zhang, Wei-Lun Chao


【15】Balance Equation-based Distributionally Robust Offline Imitation Learning
标题:基于平衡方程的分布稳健离线模仿学习
链接:https://arxiv.org/abs/2511.07942

作者:Rishabh Agrawal, Yusuf Alvi, Rahul Jain, Ashutosh Nayyar


【16】Rectified Noise: A Generative Model Using Positive-incentive Noise
标题:修正噪声:一个利用正激励噪声的生成模型
链接:https://arxiv.org/abs/2511.07911

作者:Zhenyu Gu, Yanchen Xu, Sida Huang, Yubin Guo, Hongyuan Zhang
备注:Accepted by AAAI 2026


【17】A General Method for Proving Networks Universal Approximation Property
标题:证明网络普适逼近性的通用方法
链接:https://arxiv.org/abs/2511.07857

作者:Wei Wang


【18】DP-AdamW: Investigating Decoupled Weight Decay and Bias Correction in Private Deep Learning
标题:DP-AdamW:研究私人深度学习中的脱钩体重衰退和偏差纠正
链接:https://arxiv.org/abs/2511.07843

作者:Jay Chooi, Kevin Cong, Russell Li, Lillian Sun
备注:19 pages, 5 appendices; presented at ICML 2025 DIG-BUGS Workshop


【19】Multi-Objective Bilevel Learning
标题:多目标二层学习
链接:https://arxiv.org/abs/2511.07824

作者:Zhiyao Zhang, Zhuqing Liu, Xin Zhang, Wen-Yen Chen, Jiyan Yang, Jia Liu


【20】Laplacian Score Sharpening for Mitigating Hallucination in Diffusion Models
标题:拉平拉普拉斯分数以缓解扩散模型中的幻觉
链接:https://arxiv.org/abs/2511.07496

作者:Barath Chandran.C, Srinivas Anumasa, Dianbo Liu


【21】When Are Learning Biases Equivalent? A Unifying Framework for Fairness, Robustness, and Distribution Shift
标题:学习偏见何时相同?公平、稳健和分配转变的统一框架
链接:https://arxiv.org/abs/2511.07485

作者:Sushant Mehta


【22】Slimmable NAM: Neural Amp Models with adjustable runtime computational cost
标题:纤薄的NAM:具有可调运行时计算成本的神经网络模型
链接:https://arxiv.org/abs/2511.07470

作者:Steven Atkinson
备注:2 pages, 2 figures. Accepted to NeurIPS 2025 workshop on AI for Music


【23】Resource Allocation in Hybrid Radio-Optical IoT Networks using GNN with Multi-task Learning
标题:使用GNN和多任务学习在混合无线光物联网网络中进行资源分配
链接:https://arxiv.org/abs/2511.07428

作者:Aymen Hamrouni, Sofie Pollin, Hazem Sallouha
备注:20 pages, 17 figures, 3 tables


【24】Feature Importance Guided Random Forest Learning with Simulated Annealing Based Hyperparameter Tuning
标题:特征重要性引导的随机森林学习,基于模拟退变的超参数调整
链接:https://arxiv.org/abs/2511.00133

作者:Kowshik Balasubramanian, Andre Williams, Ismail Butun
备注:10 pages, 2 figures, 3 tables, submitted to IEEE Intelligent Systems journal


【25】Generative AI Meets 6G and Beyond: Diffusion Models for Semantic Communications
标题:生成性人工智能迎接6G及以后:语义通信的扩散模型
链接:https://arxiv.org/abs/2511.08416

作者:Hai-Long Qin, Jincheng Dai, Guo Lu, Shuo Shao, Sixian Wang, Tongda Xu, Wenjun Zhang, Ping Zhang, Khaled B. Letaief
备注:Under review, GitHub repository: this https URL


【26】Concentration bounds on response-based vector embeddings of black-box generative models
标题:黑匣子生成模型基于响应的载体嵌入的浓度界限
链接:https://arxiv.org/abs/2511.08307

作者:Aranyak Acharyya, Joshua Agterberg, Youngser Park, Carey E. Priebe


【27】From Classical to Hybrid: A Practical Framework for Quantum-Enhanced Learning
标题:从经典到混合:量子增强学习的实用框架
链接:https://arxiv.org/abs/2511.08205

作者:Silvie Illésová, Tomáš Bezděk, Vojtěch Novák, Ivan Zelinka, Stefano Cacciatore, Martin Beseda


【28】Good flavor search in $SU(5)$: a machine learning approach
标题:$SU(5)$中的良好风味搜索:机器学习方法
链接:https://arxiv.org/abs/2511.08154

作者:Fayez Abu-Ajamieh, Shinsuke Kawai, Nobuchika Okada
备注:14 pages, 9 figures


【29】Misaligned by Design: Incentive Failures in Machine Learning
标题:设计失调:机器学习中的激励失败
链接:https://arxiv.org/abs/2511.07699

作者:David Autor, Andrew Caplin, Daniel Martin, Philip Marx


【30】Kolmogorov-Arnold Chemical Reaction Neural Networks for learning pressure-dependent kinetic rate laws
标题:Kolmogorov-Arnold化学反应神经网络学习压力相关动力学速率定律
链接:https://arxiv.org/abs/2511.07686

作者:Benjamin C. Koenig, Sili Deng
备注:5 pages, 4 figures


其他(40篇)

【1】The Path Not Taken: RLVR Provably Learns Off the Principals
标题:未选择的道路:WLVR可以证明学习了校长
链接:https://arxiv.org/abs/2511.08567

作者:Hanqing Zhu, Zhenyu Zhang, Hanxian Huang, DiJia Su, Zechun Liu, Jiawei Zhao, Igor Fedorov, Hamed Pirsiavash, Zhizhou Sha, Jinwon Lee, David Z. Pan, Zhangyang Wang, Yuandong Tian, Kai Sheng Tai
备注:Preliminary version accepted as a spotlight in NeurIPS 2025 Workshop on Efficient Reasoning


【2】CleverBirds: A Multiple-Choice Benchmark for Fine-grained Human Knowledge Tracing
标题:CleverBirds:细粒度人类知识追踪的多项选择基准
链接:https://arxiv.org/abs/2511.08512

作者:Leonie Bossemeyer, Samuel Heinrich, Grant Van Horn, Oisin Mac Aodha
备注:To appear at NeurIPS 2025 - Datasets and Benchmarks Track


【3】Structured RAG for Answering Aggregative Questions
标题:结构化RAG,用于回答汇总问题
链接:https://arxiv.org/abs/2511.08505

作者:Omri Koshorek, Niv Granot, Aviv Alloni, Shahar Admati, Roee Hendel, Ido Weiss, Alan Arazi, Shay-Nitzan Cohen, Yonatan Belinkov


【4】Binary Split Categorical feature with Mean Absolute Error Criteria in CART
标题:CART中具有平均绝对误差标准的二进制拆分分类特征
链接:https://arxiv.org/abs/2511.08470

作者:Peng Yu, Yike Chen, Chao Xu, Albert Bifet, Jesse Read


【5】Coherence Mechanisms for Provable Self-Improvement
标题:可证明的自我完善的一致性机制
链接:https://arxiv.org/abs/2511.08440

作者:Mehryar Mohri, Jon Schneider, Yifan Wu


【6】An update to PYRO-NN: A Python Library for Differentiable CT Operators
标题:PYRO-NN的更新:用于区分CT运算符的Python库
链接:https://arxiv.org/abs/2511.08427

作者:Linda-Sophie Schneider, Yipeng Sun, Chengze Ye, Markus Michen, Andreas Maier


【7】Probabilistic Safety Guarantee for Stochastic Control Systems Using Average Reward MDPs
标题:随机控制系统的概率安全保证
链接:https://arxiv.org/abs/2511.08419

作者:Saber Omidi, Marek Petrik, Se Young Yoon, Momotaz Begum
备注:Submitted to the Learning for Dynamics & Control (L4DC) 2026 conference


【8】Physics-Informed Neural Operators for Cardiac Electrophysiology
标题:心脏电生理学的物理知情神经操作员
链接:https://arxiv.org/abs/2511.08418

作者:Hannah Lydon, Milad Kazemi, Martin Bishop, Nicola Paoletti
备注:All code used in this work, including experimental results, can be found at this https URL This work was submitted for review at the 2026 L4DC conference


【9】From Confusion to Clarity: ProtoScore - A Framework for Evaluating Prototype-Based XAI
标题:从混乱到清晰:ProtoScore -评估基于原型的XAI的框架
链接:https://arxiv.org/abs/2511.08361

作者:Helena Monke, Benjamin Sae-Chew, Benjamin Fresz, Marco F. Huber


【10】Mitigating Negative Flips via Margin Preserving Training
标题:通过保证金保留训练缓解负面翻转
链接:https://arxiv.org/abs/2511.08322

作者:Simone Ricci, Niccolò Biondi, Federico Pernici, Alberto Del Bimbo
备注:Accepted at AAAI2026


【11】Rethinking Explanation Evaluation under the Retraining Scheme
标题:再训练计划下的解说评价反思
链接:https://arxiv.org/abs/2511.08281

作者:Yi Cai, Thibaud Ardoin, Mayank Gulati, Gerhard Wunder


【12】Prompt Tuning for Natural Language to SQL with Embedding Fine-Tuning and RAG
标题:通过嵌入细调和RAG来提示自然语言到SQL的调优
链接:https://arxiv.org/abs/2511.08245

作者:Jisoo Jang, Tien-Cuong Bui, Yunjun Choi, Wen-Syan Li
备注:Presented at the Workshop on Robust ML in Open Environments (PAKDD 2024)


【13】Deep (Predictive) Discounted Counterfactual Regret Minimization
标题:深度(预测性)折扣反事实遗憾最小化
链接:https://arxiv.org/abs/2511.08174

作者:Hang Xu, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng
备注:Accepted to 40th AAAI Conference on Artificial Intelligence (AAAI 2026)


【14】HipKittens: Fast and Furious AMD Kernels
标题:HipKittens:快速而激情的AMD内核
链接:https://arxiv.org/abs/2511.08083

作者:William Hu, Drew Wadsworth, Sean Siddens, Stanley Winata, Daniel Y. Fu, Ryann Swann, Muhammad Osama, Christopher Ré, Simran Arora


【15】Online Linear Regression with Paid Stochastic Features
标题:具有付费随机特征的在线线性回归
链接:https://arxiv.org/abs/2511.08073

作者:Nadav Merlis, Kyoungseok Jang, Nicolò Cesa-Bianchi
备注:Accepted to AAAI 2026


【16】Predict-then-Optimize Method for Seaport Power-Logistics Scheduling: Generalization across Varying Tasks Stream
标题:海港电力物流调度的先预测后优化方法:跨不同任务流的概括
链接:https://arxiv.org/abs/2511.07938

作者:Chuanqing Pu, Feilong Fan, Nengling Tai, Yan Xu, Wentao Huang, Honglin Wen
备注:Preprint to IEEE Transactions on Smart Grid


【17】CellARC: Measuring Intelligence with Cellular Automata
标题:CellARC:用细胞自动机测量智力
链接:https://arxiv.org/abs/2511.07908

作者:Miroslav Lžičař
备注:22 pages, 11 figures. Working draft. Dataset and leaderboard available at this https URL


【18】A Generalized Spectral Framework to Expain Neural Scaling and Compression Dynamics
标题:解释神经缩放和压缩动力学的广义谱框架
链接:https://arxiv.org/abs/2511.07892

作者:Yizhou Zhang


【19】Intelligence per Watt: Measuring Intelligence Efficiency of Local AI
标题:每瓦智能:衡量本地人工智能的智能效率
链接:https://arxiv.org/abs/2511.07885

作者:Jon Saad-Falcon, Avanika Narayan, Hakki Orhun Akengin, J. Wes Griffin, Herumb Shandilya, Adrian Gamarra Lafuente, Medhya Goel, Rebecca Joseph, Shlok Natarajan, Etash Kumar Guha, Shang Zhu, Ben Athiwaratkun, John Hennessy, Azalia Mirhoseini, Christopher Ré


【20】Algorithm-Relative Trajectory Valuation in Policy Gradient Control
标题:政策梯度控制中的边界相对轨迹估值
链接:https://arxiv.org/abs/2511.07878

作者:Shihao Li, Jiachen Li, Jiamin Xu, Christopher Martin, Wei Li, Dongmei Chen


【21】Parallel Sampling via Autospeculation
标题:通过自动推测进行并行采样
链接:https://arxiv.org/abs/2511.07869

作者:Nima Anari, Carlo Baronio, CJ Chen, Alireza Haqi, Frederic Koehler, Anqi Li, Thuy-Duong Vuong


【22】Analyzing Political Text at Scale with Online Tensor LDA
标题:利用在线张量LDA大规模分析政治文本
链接:https://arxiv.org/abs/2511.07809

作者:Sara Kangaslahti, Danny Ebanks, Jean Kossaifi, Anqi Liu, R. Michael Alvarez, Animashree Anandkumar
备注:64 pages, 11 figures


【23】Streaming Tensor Program: A streaming abstraction for dynamic parallelism
标题:流张量程序:动态并行性的流抽象
链接:https://arxiv.org/abs/2511.07776

作者:Gina Sohn, Genghan Zhang, Konstantin Hossfeld, Jungwoo Kim, Nathan Sobotka, Nathan Zhang, Olivia Hsu, Kunle Olukotun


【24】SALT: Steering Activations towards Leakage-free Thinking in Chain of Thought
标题:SALT:引导思维链中的无泄漏思维
链接:https://arxiv.org/abs/2511.07772

作者:Shourya Batra, Pierce Tillman, Samarth Gaggar, Shashank Kesineni, Kevin Zhu, Sunishchal Dev, Ashwinee Panda, Vasu Sharma, Maheep Chaudhary


【25】Schedulers for Schedule-free: Theoretically inspired hyperparameters
标题:无日程安排者:理论启发的超参数
链接:https://arxiv.org/abs/2511.07767

作者:Yuen-Man Pun, Matthew Buchholz, Robert M. Gower


【26】From Exploration to Exploitation: A Two-Stage Entropy RLVR Approach for Noise-Tolerant MLLM Training
标题:从探索到开发:耐噪MLLM训练的两阶段Entropy WLVR方法
链接:https://arxiv.org/abs/2511.07738

作者:Donglai Xu, Hongzheng Yang, Yuzhi Zhao, Pingping Zhang, Jinpeng Chen, Wenao Ma, Zhijian Hou, Mengyang Wu, Xiaolei Li, Senkang Hu, Ziyi Guan, Jason Chun Lok Li, Lai Man Po


【27】TurboSAT: Gradient-Guided Boolean Satisfiability Accelerated on GPU-CPU Hybrid System
标题:TurboSAT:在GPU-中央处理器混合系统上加速对象引导布尔可满足性
链接:https://arxiv.org/abs/2511.07737

作者:Steve Dai, Cunxi Yu, Kalyan Krishnamani, Brucek Khailany
备注:7 pages, 5 equations, 5 figures, 1 table


【28】Stress Testing Factual Consistency Metrics for Long-Document Summarization
标题:长文档摘要的压力测试事实一致性收件箱
链接:https://arxiv.org/abs/2511.07689

作者:Zain Muhammad Mujahid, Dustin Wright, Isabelle Augenstein


【29】ResearchRubrics: A Benchmark of Prompts and Rubrics For Evaluating Deep Research Agents
标题:研究专题:评估深度研究代理的预算和专题基准
链接:https://arxiv.org/abs/2511.07685

作者:Manasi Sharma, Chen Bo Calvin Zhang, Chaithanya Bandi, Clinton Wang, Ankit Aich, Huy Nghiem, Tahseen Rabbani, Ye Htet, Brian Jang, Sumana Basu, Aishwarya Balwani, Denis Peskoff, Marcos Ayestaran, Sean M. Hendryx, Brad Kenstler, Bing Liu
备注:27 pages, 21 figures, pre-print


【30】Cortex AISQL: A Production SQL Engine for Unstructured Data
标题:Cortex AISQL:用于非结构化数据的生产SQL引擎
链接:https://arxiv.org/abs/2511.07663

作者:Paritosh Aggarwal, Bowei Chen, Anupam Datta, Benjamin Han, Boxin Jiang, Nitish Jindal, Zihan Li, Aaron Lin, Pawel Liskowski, Jay Tayade, Dimitris Tsirogiannis, Nathan Wiegand, Weicheng Zhao


【31】Partial Action Replacement: Tackling Distribution Shift in Offline MARL
标题:部分操作替代:解决离线MARL中的分布变化
链接:https://arxiv.org/abs/2511.07629

作者:Yue Jin, Giovanni Montana
备注:Accepted by AAAI 2026


【32】N-ReLU: Zero-Mean Stochastic Extension of ReLU
标题:N-ReLU:ReLU的零均值随机扩展
链接:https://arxiv.org/abs/2511.07559

作者:Md Motaleb Hossen Manik, Md Zabirul Islam, Ge Wang


【33】Provably Efficient Sample Complexity for Robust CMDP
标题:稳健CMDP的可证明有效的样本复杂性
链接:https://arxiv.org/abs/2511.07486

作者:Sourav Ganguly, Arnob Ghosh


【34】RELEAP: Reinforcement-Enhanced Label-Efficient Active Phenotyping for Electronic Health Records
标题:RELEAP:电子健康记录的增强标签高效主动表型
链接 :https://arxiv.org/abs/2511.07473

作者:Yang Yang (1), Kathryn Pollak (2,3), Bibhas Chakraborty (1,4,5,6), Molei Liu (7,8), Doudou Zhou (6), Chuan Hong (1) ((1) Department of Biostatistics and Bioinformatics, Duke University, Durham, USA, (2) Duke Cancer Institute, Durham, USA, (3) Department of Population Health Sciences, Duke University School of Medicine, Durham, USA, (4) Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, (5) Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, (6) Department of Statistics and Data Science, National University of Singapore, Singapore, (7) Department of Biostatistics, Peking University Health Science Center, Beijing, China, (8) Beijing International Center for Mathematical Research, Peking University, Beijing, China)
备注:20 pages, 5 figures, 1 table. Includes supplementary material. Submitted to JAMIA Open. † These authors contributed equally. *Corresponding author: Chuan Hong


【35】Revealing the Hidden Third Dimension of Point Defects in Two-Dimensional MXenes
标题:揭示二维MXenes中隐藏的点缺陷的第三维度
链接:https://arxiv.org/abs/2511.08350

作者:Grace Guinan, Michelle A. Smeaton, Brian C. Wyatt, Steven Goldy, Hilary Egan, Andrew Glaws, Garritt J. Tucker, Babak Anasori, Steven R. Spurgeon
备注:38 pages, 13 figures


【36】A Fast and Accurate Approach for Covariance Matrix Construction
标题:一种快速准确的协方差矩阵构造方法
链接:https://arxiv.org/abs/2511.08223

作者:Felix Reichel
备注:12 pages, 7 figures


【37】Emulating Radiative Transfer in Astrophysical Environments
标题:天体物理环境中的辐射传输模拟
链接:https://arxiv.org/abs/2511.08219

作者:Rune Rost, Lorenzo Branca, Tobias Buck
备注:Accepted at the Differentiable Systems and Scientific Machine Learning workshop at EurIPS, 2025


【38】Distributionally Robust Online Markov Game with Linear Function Approximation
标题:线性函数逼近的分布鲁棒在线马尔科夫博弈
链接:https://arxiv.org/abs/2511.07831

作者:Zewu Zheng, Yuanyuan Lin
备注:To be published in the Proceedings of AAAI 2026


【39】Infinite-Dimensional Operator/Block Kaczmarz Algorithms: Regret Bounds and $λ$-Effectiveness
标题:无限维运算符/块Kaczmarz算法:遗憾界和$X $-有效性
链接:https://arxiv.org/abs/2511.07604

作者:Halyun Jeong, Palle E.T. Jorgensen, Hyun-Kyoung Kwon, Myung-Sin Song
备注:Submitted to a journal


【40】Tractable Instances of Bilinear Maximization: Implementing LinUCB on Ellipsoids
标题:双线性最大化的易于处理:在椭圆体上实现LinUCB
链接:https://arxiv.org/abs/2511.07504

作者:Raymond Zhang, Hédi Hadiji, Richard Combes
备注:27 pages, 8 figures, 4 algos


机器翻译由腾讯交互翻译提供,仅供参考

点击“阅读原文”获取带摘要的学术速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/188986