1、缺失查看
首先,需要查看缺失值的缺失数量以及比例(#数据使用的kaggle平台上预测房价的数据)
import pandas as pd
missing=data.isnull().sum().reset_index().rename(columns={0:'missNum'})missing['missRate']=missing['missNum']/data.shape[0]miss_analy=missing[missing.missRate>0].sort_values(by='missRate',ascending=False)
柱形图可视化
import matplotlib.pyplot as pltimport pylab as pl
fig = plt.figure(figsize=(18,6))plt.bar(np.arange(miss_analy.shape[0]), list(miss_analy.missRate.values), align = 'center',color=['red','green','yellow','steelblue'])
plt.title('Histogram of missing value of variables')plt.xlabel('variables names')plt.ylabel('missing rate')plt.xticks(np.arange(miss_analy.shape[0]),list(miss_analy['index']))pl.xticks(rotation=90)for x,y in enumerate(list(miss_analy.missRate.values)): plt.text(x,y+0.12,'{:.2%}'.format(y),ha='center',rotation=90) plt.ylim([0,1.2])
plt.show()

这样的统计计算以及可视化基本已经看出哪些变量缺失,以及缺失比例情况,对数据即有个缺失概况。下面将对缺失变量进行相应处理。
2、缺失处理
方式1:删除
直接去除含有缺失值的记录,这种处理方式是简单粗暴的,适用于数据量较大(记录较多)且缺失比较较小的情形,去掉后对总体影响不大。一般不建议这样做,因为很可能会造成数据丢失、数据偏移。
func: df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
df.drop('age', axis=1, inplace=True)
df.dropna()
df.dropna(axis=0, subset=['a','b'
], inplace=True)
直接去除缺失变量,基于第一步我们已经知道每个变量的缺失比例,如果一个变量的缺失比例过高,基本也就失去了预测意义,这样的变量我们可以尝试把它直接去掉。
data=data.dropna(thresh=len(data)*0.2, axis=1)
方式2:常量填充
在进行缺失值填充之前,我们要先对缺失的变量进行业务上的了解,即变量的含义、获取方式、计算逻辑,以便知道该变量为什么会出现缺失值、缺失值代表什么含义。比如,‘age’ 年龄缺失,每个人均有年龄,缺失应该为随机的缺失,‘loanNum’贷款笔数,缺失可能代表无贷款,是有实在意义的缺失。
全局常量填充:可以用0,均值、中位数、众数等填充。
平均值适用于近似正态分布数据,观测值较为均匀散布均值周围;中位数适用于偏态分布或者有离群点数据,中位数是更好地代表数据中心趋势;众数一般用于类别变量,无大小、先后顺序之分。
data['col'] = data['col'].fillna(data['col'].means())data['col'] = data['col'].fillna(data['col'].median())data['col'] = data['col'].fillna(stats.mode(data['col'])[0][0])
也可以借助Imputer类处理缺失:
from sklearn.preprocessing import Imputerimr = Imputer(missing_values='NaN', strategy='mean', axis=0)imputed_data =pd.DataFrame(imr.fit_transform(df.values),columns=df.columns)imputed_data
方式3:插值填充
采用某种插入模式进行填充,比如取缺失值前后值的均值进行填充:
df['a'] = df['a'].interpolate()
df.fillna(method='pad')
df.fillna(method='backfill')#用后面的值替换
方式4:KNN填充
利用knn算法填充,其实是把目标列当做目标标量,利用非缺失的数据进行knn算法拟合,最后对目标列缺失进行预测。(对于连续特征一般是加权平均,对于离散特征一般是加权投票)
fancyimpute 类
from fancyimpute import KNNfill_knn = KNN(k=3).fit_transform(data)data = pd.DataFrame(fill_knn)
sklearn类
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
def knn_filled_func(x_train, y_train, test, k = 3, dispersed = True): if dispersed: knn= KNeighborsClassifier(n_neighbors = k, weights = "distance") else: knn= KNeighborsRegressor(n_neighbors = k, weights = "distance")
knn.fit(x_train, y_train) return test.index, knn.predict(test)
方式5:随机森林填充
随机森林算法填充的思想和knn填充是类似的,即利用已有数据拟合模型,对缺失变量进行预测。
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
def knn_filled_func(x_train, y_train, test, k = 3, dispersed = True): if dispersed: rf= RandomForestRegressor() else: rf= RandomForestClassifier()
rf.fit(x_train, y_train) return test.index, rf.predict(test)
3、缺失衍生
有时候,可以根据某个字段是否缺失,进行新变量的衍生,比如,"信用卡数量",若该字段缺失,代表'无信用卡',则可以根据"信用卡数量"是否缺失衍生'有无信用卡'字段,这种衍生很可能是很有效果的。
4、总结
总之,处理缺失值是需要研究数据规律与缺失情况来进行处理的,复杂的算法不一定有好的效果,因此,还要具体问题具体分析,尤其是要搞明白字段含义以及缺失意义,这往往容易被忽略。个人经验,数据处理需要去探索,没有一成不变的万全之策。