社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

如何修复Python中statsmodels的Holt和Holt-Winters函数中的TypeError

Yixin Liu • 5 年前 • 1511 次点击  

我用这样的数据

data = [253993,275396.2,315229.5,356949.6,400158.2,442431.7,495102.9,570164.8,\
640993.1,704250.4,767455.4,781807.8,776332.3,794161.7,834177.7,931651.5,\
1028390,1114914]

然后,我导入statsmodels并使用Holts方法

import matplotlib.pyplot as plt
from statsmodels.tsa.holtwinters import ExponentialSmoothing, SimpleExpSmoothing, Holt

# Holt’s Method
fit1 = Holt(data).fit(smoothing_level=0.8, smoothing_slope=0.2, optimized=False)
l1, = plt.plot(list(fit1.fittedvalues) + list(fit1.forecast(5)), marker='o')

fit2 = Holt(data, exponential=True).fit(smoothing_level=0.8, smoothing_slope=0.2, optimized=False)
l2, = plt.plot(list(fit2.fittedvalues) + list(fit2.forecast(5)), marker='o')

fit3 = Holt(data, damped=True).fit(smoothing_level=0.8, smoothing_slope=0.2)
l3, = plt.plot(list(fit3.fittedvalues) + list(fit3.forecast(5)), marker='o')

l4, = plt.plot(data, marker='o')
plt.legend(handles = [l1, l2, l3, l4], labels = ["Holt's linear trend", "Exponential trend", "Additive damped trend", 'data'], loc = 'best', prop={'size': 7})
plt.show()

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-17-9ce7957db4db> in <module>()
      3 l1, = plt.plot(list(fit1.fittedvalues) + list(fit1.forecast(5)), marker='o')
      4 
----> 5 fit2 = Holt(data, exponential=True)
      6 fit2.fit(smoothing_level=0.8, smoothing_slope=0.2, optimized=False)
      7 l2, = plt.plot(list(fit2.fittedvalues) + list(fit2.forecast(5)), marker='o')

g:\competition\venv\lib\site-packages\statsmodels\tsa\holtwinters.py in __init__(self, endog, exponential, damped)
    851     def __init__(self, endog, exponential=False, damped=False):
    852         trend = 'mul' if exponential else 'add'
--> 853         super(Holt, self).__init__(endog, trend=trend, damped=damped)
    854 
    855     def fit(self, smoothing_level=None, smoothing_slope=None, damping_slope=None, optimized=True):

g:\competition\venv\lib\site-packages\statsmodels\tsa\holtwinters.py in __init__(self, endog, trend, damped, seasonal, seasonal_periods, dates, freq, missing)
    389         self.trending = trend in ['mul', 'add']
    390         self.seasoning = seasonal in ['mul', 'add']
--> 391         if (self.trend == 'mul' or self.seasonal == 'mul') and (endog <= 0.0).any():
    392             raise NotImplementedError(
    393                 'Unable to correct for negative or zero values')

TypeError: '<=' not supported between instances of 'list' and 'float'

我不知道为什么,其他人都是正常的。(霍尔特·温特斯的方法也是这样)

我认为是指数参数导致了这个问题。那么我应该怎么做才能使用指数模型呢?

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/54252
 
1511 次点击  
文章 [ 1 ]  |  最新文章 5 年前