社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  python开源

科悟学院讲解Python是什么以及Python的应用

科悟学院 • 5 年前 • 797 次点击  

人工智能相信现在大多数人都已经不陌生了,逐渐进入千家万户,但是知道人工智能是什么编写的吗?其实人工智能现在最主要的是利用Python语言去编写的,有人会问Python是什么?今天科悟学院的讲师就为你介绍一下Python是什么以及Python的应用,希望对你有所帮助。

Python 是一种解释型、面向对象、动态数据类型的强类型高级程序设计语言。

1.编程语言简介和特点

编程语言主要从以下几个角度为进行分类,编译型和解释型、静态语言和动态语言、强类型定义语言和弱类型定义语言,每个分类代表什么意思呢,我们一起来看一下。

1.1.编译和解释型语言的区别

CPU不能直接认识并执行我们写的语句,它只能认识机器语言(CPU指令集;二进制的形式);因此我们开发语言的Virtual Machine要将识别的开发语言转换成机器语言让CPU去执行;那么就有两种以下两种方式:

编译器是把源程序的每一条语句都编译成机器语言,并保存成二进制文件,这样运行时计算机可以直接以机器语言来运行此程序,速度很快;

解释器则是只在执行程序时,才一条一条的解释成机器语言给计算机来执行,所以运行速度是不如编译后的程序运行的快的.

编译型 解释型 混合型

C Java Script Java

C++ Python C#

GO Ruby N/A

Swift PHP N/A

Ojbect-C Perl N/A

1.2.编译和解释型优缺点

编译型

优点:编译器一般会有预编译的过程对代码进行优化。因为编译只做一次,运行时不需要编译,所以编译型语言的程序执行效率高。可以脱离语言环境独立运行。

缺点:编译之后如果需要修改就需要整个模块重新编译。编译的时候根据对应的运行环境生成机器码,不同的操作系统之间移植就会有问题,需要根据运行的操作系统环境编译不同的可执行文件。

解释型

优点:有良好的平台兼容性,在任何环境中都可以运行,前提是安装了解释器(虚拟机)。灵活,修改代码的时候直接修改就可以,可以快速部署,不用停机维护。

缺点:每次运行的时候都要解释一遍,性能上不如编译型语言。

1.3.静态和动态语言

通常我们所说的动态语言、静态语言是指动态类型语言和静态类型语言。

动态类型语言:

动态类型语言是指在运行期间才去做数据类型检查的语言,也就是说,在用动态类型的语言编程时,永远也不用给任何变量指定数据类型,该语言会在你第一次赋值给变量时,在内部将数据类型记录下来。Python和Ruby就是一种典型的动态类型语言,其他的各种脚本语言如VBScript也多少属于动态类型语言。

静态类型语言:

静态类型语言与动态类型语言刚好相反,它的数据类型是在编译其间检查的,也就是说在写程序时要声明所有变量的数据类型,C/C++是静态类型语言的典型代表,其他的静态类型语言还有C#、JAVA等。

1.4.强类型和弱类型定义语言

强类型定义语言在速度上可能略逊色于弱类型定义语言,但是强类型定义语言带来的严谨性能够有效的避免许多错误。另外,“这门语言是不是动态语言”与“这门语言是否类型安全”之间是完全没有联系的!

例如:

Python是动态语言,是强类型定义语言(类型安全的语言); VBScript是动态语言,是弱类型定义语言(类型不安全的语言);

JAVA是静态语言,是强类型定义语言(类型安全的语言)。

强类型定义语言:

强制数据类型定义的语言。也就是说,一旦一个变量被指定了某个数据类型,如果不经过强制转换,那么它就永远是这个数据类型了。举个例子:如果你定义了一个整型变量a,那么程序根本不可能将a当作字符串类型处理。强类型定义语言是类型安全的语言。

弱类型定义语言:

数据类型可以被忽略的语言。它与强类型定义语言相反, 一个变量可以赋不同数据类型的值。

通过上面这些介绍,我们可以得出,python是一门动态解释性的强类型定义语言。

二、Python应用领域

云计算

云计算最火的语言, 典型应用OpenStack

WEB开发

python相比php\ruby的模块化设计,非常便于功能扩展;多年来形成了大量优秀的web开发框架,并且在不断迭代;如目前优秀的全栈的django、框架flask,都继承了python简单、明确的风格,开发效率高、易维护,与自动化运维结合性好,python已经成为自动化运维平台领域的事实标准;众多大型网站均为Python开发,Youtube, Dropbox, 豆瓣。

人工智能

基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python的支持,目前世界优秀的人工智能学习框架如Google的TransorFlow 、FaceBook的PyTorch以及开源社区的神经网络库Karas等是用python实现的,甚至微软的CNTK(认知工具包)也完全支持Python,而且微软的Vscode都已经把Python作为第一级语言进行支持。

系统运维

Python在与操作系统结合以及管理中非常密切,目前所有linux发行版中都带有python,且对于linux中相关的管理功能都有大量的模块可以使用,例如目前主流的自动化配置管理工具:SaltStack Ansible(目前是RedHat的)。目前在几乎所有互联网公司,自动化运维的标配就是python+Django/flask,另外,在虚拟化管理方面已经是事实标准的openstack就是python实现的,所以Python是所有运维人员的必备技能。

金融

量化交易,金融分析,在金融工程领域,Python不但在用,且用的最多,而且重要性逐年提高。原因:作为动态语言的Python,语言结构清晰简单,库丰富,成熟稳定,科学计算和统计分析都很牛逼,生产效率远远高于c,c++,java,尤其擅长策略回测

大数据

Python相对于其它解释性语言最大的特点是其庞大而活跃的科学计算生态,在数据分析、交互、可视化方面有相当完善和优秀的库(python数据分析栈:Numpy Pandas Scipy Matplotlip Ipython), 并且还形成了自己独特的面向科学计算的Python发行版Anaconda,而且这几年一直在快速进化和完善,对传统的数据分析语言如R MATLAB SAS Stata形成了非常强的替代性。

以上就是科悟学院对于Python是什么以及Python的应用的介绍,希望对于正在学习python的你有所帮助,下期我们会分享一下python的前景以及薪资方面的知识点,如果你想学习python可以在下方留言,有专门的学习群还有资料供你学习。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/54576
 
797 次点击