社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

独家原创|基于机器学习和大数据挖掘的药物重定位算法综述

药学进展 • 5 年前 • 310 次点击  
PPS
点击蓝字关注我们↑↑↑↑

专家介绍:田埂


博士,元码基因创始人、首席科学家、北京科技大学兼职教授、湖南工业大学兼职教授、研究生导师。全国卫生产业管理协会副主任委员、中国遗传协会产业促进委员会副主任委员、国际肿瘤基因组(ICGC)成员。博士毕业于中国科学院基因组研究所,曾任清华大学基因组与合成生物学中心主任,华大基因华北区第一负责人,天津华大创始人总经理,深圳华大基因研究院研发副主管。曾参与和主持多项国家“863”“973”项目,带领研究团队先后完成项目包括:第一个亚洲人全基因组测序研究、国际千人基因组计划、国际大熊猫基因组计划、炎黄一号甲基化研究项目、北京空气污染可吸入微生物研究等。以通讯作者和第一作者在Nature等国际顶级期刊发表文章20余篇,拥有20多项核心技术专利。

正文

基于机器学习和大数据挖掘的药物重定位算法综述



[摘要]药物重定位(又称药物重使用或药物重配置)是将现有治疗方法应用于新的疾病的过程的一种药物研发方法。新药研发成本高、失败率高,使得对现有药物进行重新定位成为目前研究的热点。在高通量测序技术的帮助下,许多有效的算法被提出并应用于药物的重新定位。目前用于药物和化合物重定位的算法可分为基于特征的方法、基于矩阵分解的方法、基于网络的方法3大类。分别对这3类常用方法进行综述,总结这些方法的优缺点,并对未来药物重新定位方法的发展方向进行剖析,以期达到帮助我国科研工作者开发更加有效的药物重定位算法,增加我国社会经济效益的目的。

药物重定位(又称为药物重新使用或药物重新配置)是将现有药物应用于新的疾病的过程。与传统的药物研发方法相比,药物重定位可以显著降低成本。药物重新定位的一个显著优势是,由于重新定位的药物已经通过了大量的安全测试,因此它的安全性是已知的,从而降低了药物研发失败的风险。此外,重新定位的药物可以节省将药物推向市场所需的早期成本和时间,从而加快了从基础研究工作到临床治疗的过渡。德国会计律师事务所(Deloitte&Touche)于2016年发布的一份研究报告显示医药研发巨头公司的投资回报率从2010年的10.1%下降到了2016年的3.7%。同时,研发一种新药的平均成本从不足12亿美元增加到15.4亿美元,研发时间需要14年。Nosengo等得出如下结论:目前新的药物进入市场需要13~15年,耗费资金在20~30亿美元之间,并且成本还在不断上升。一些调查结果显示,重新定位药物成本平均只有3亿美元,进入市场大约需要6.5年。

药物重定位主要包括基于机器学习的方法、大数据挖掘定位的方法和基于活体定位的方法。基于机器学习和大数据挖掘的药物重定位方法依赖于治疗后细胞株的基因表达反应,或者依赖于药物与疾病之间的多层次信息关系,并且利用公共数据库和生物信息学工具系统地识别药物与蛋白靶点之间的相互作用网络。由于几十年来蛋白质与药效之间结构信息的积累,该方法已逐渐取得成功,与基于活体方法相比,基于机器学习和大数据挖掘的药物再定位技术具有速度快、成本低等优点。基于机器学习和大数据挖掘的药物再定位技术已成为一项潜在的强大技术。

本文介绍了近年来计算药物重定位的研究进展。重点介绍基于特征的方法、基于矩阵分解的方法和基于网络的方法。

1基于特征的方法

基于计算方法的药物重定位的方法利用公共数据库和生物信息学工具系统地确定药物和目标蛋白之间的相互作用网络。但是高分辨率的靶点结构信息、疾病表型信息或药物基因表达谱会增加特征数据集的维度。例如:美国癌细胞系百科全书项目(cancer cell line encyclopedia,CCLE)研究了5万多个特征表示上千万个基因的mRNA表达和突变状态。用于训练的样本数量明显少于可用特征的数量,所有这些特征的直接应用都会导致模型过拟合,而实际上,只有一小部分特征集对药物敏感性预测有作用。因此,研究人员提出了基于特征的方法。基于特征的方法主要分为基于传统机器学习算法的方法和基于深度学习的方法。

1.1基于传统机器学习算法的方法

机器学习算法与药物-标靶相互作用网络信息结合,为药物研发提供了新思路。2006年,Guengerich利用机器学习算法揭示了P450酶在药物代谢和毒性中所产生的作用。Napolitano等将非线性支持向量机(support vector machines,SVM)应用于药物的疗效分类上。Gottlieb等利用逻辑回归算法对药物进行重定位。Yabuuchi等将药物的化学描述信息与靶蛋白序列组合为混合特征矩阵,并利用SVM预测新的蛋白靶标。Gönen利用机器学习中的贝叶斯算法对药物与靶蛋白进行预测,寻找新的药物与靶蛋白关联关系。基于机器学习的药物重定位模型如图1所示。首先将药物与副作用信息、药物化学结构信息和疾病与基因的相关信息进行整合,然后通过特征提取和特征选择得到训练数据。选择相关机器学习算法进行训练,最后利用训练好的算法模型得到药物重定位结果。

特征提取方法将原始特征投影到一个新的维数较低的特征空间中,新得到的特征通常是原始特征的组合,目的是发现更多有意义的信息。特征提取技术常见的有主成分分析法(principal component analysis,PCA)、奇异值分解法(singular value decomposition,SVD)。

特征选择方法的目的是根据一些设计标准从完整的输入特征集中选择一小部分特征,作为模型的输入。在预测药物敏感性的过程中,通常将先验生物学知识纳入特征部分。例如:基于路径的弹性网络正则化,它将路径整合到以数据驱动的特征选择中。基于生物学通路的特征选择,将信号和调控通路与基因表达数据相结合,选择具有最低冗余的重要特征或利用信号通路的激活状态作为特征。常见的特征选择方法有过滤式、包裹式和嵌入式法。常用的特征选择方法以及它们的特点如表所示。

利用传统机器学习算法对特定药物进行重定位可以提高药物定位结果预测的准确性,降低研发成本,缩短研发时间。但是,随着大数据时代的到来,传统的机器学习方法逐渐变得难以适应复杂的样本,由于存在对复杂函数的表示能力有限、学习能力不强等不足,它们往往只能提取初级特征。同时,因为以人工方式选取特征的步骤繁复冗杂,传统的机器学习方法有时并不能有效地挖掘数据中蕴含的丰富信息。

1.2基于深度学习的方法

深度学习算法是机器学习算法的新方向,其本质是深层次的神经网络。深度学习通过模拟人脑建立计算模型,具有强大的自动提取特征的能力以及有效的特征表征能力,能够获取不同层次的信息。基于以上优点,深度学习在药物重定位方面也得到了应用。Korotcov等将深度神经网络(deep neural network,DNN)与其他多种机器学习方法在药物研发的多个方面进行系统比较,结果表明,深度学习的表现优于传统机器学习算法。Rodríguez-Pérez等构建小分子-靶标的活性谱,并利用深度学习模型进行测试。Lusci等将递归神经网络(recurrent neural network,RNN)与化合物的表征方式结合,并得到了很高的准确度。Segler等基于深度学习结合蒙特卡洛算法的方法简单高效,得到了专业人员的肯定。Hughes等利用深度学习模型研发了第一个能够对化合物进行快速筛选的模型。Turk等提取ChEMBL数据库中匹配分子作为深度学习模型的数据集。

深度学习模型往往需要大量标记样本进行训练,对标记样本的需求很高。在生物医学和药物研发的应用场景下,标记样本的获取依赖于领域专家知识和实验验证,成本较高。同时,基于深度学习得到的模型的端到端的计算模式使得研究者不能理解深度学习模型提取的特征所表征的含义,从而难以在药物研发过程中做出合理可靠的决策。

2基于矩阵完成的方法

计算药物重新定位的基础之一是准确预测药物-靶点相互作用(drug-target interaction,DTI)。DTI可以用药物和靶标的二进制标记矩阵Y表示,如果药物Di和靶标Sj相互作用,则矩阵Y中的元素Ri,j为1,否则Ri,j为0。预测DTI的问题也就转化为从Y的已知元素中估计未知元素的标签的问题。药物-靶标关联矩阵Y如下图2所示。

近年来研究人员提出了各种预测DTI的计算方法。其中,基于贝叶斯的矩阵分解方法被广泛应用于药DTI矩阵,如表2所示。

矩阵分解能够将较高维度的数据映射为2个低维度矩阵的乘积,从而能够很好地解决数据的稀疏性问题,并且矩阵分解的具体实现和求解很简洁,便于理解。基于矩阵分解建立的模型的预测准确度较高,具有很强的扩展性,其基本思想能够运用在各种场景中。但是,矩阵分解模型也有一定的局限性。例如:1)模型的可解释性差,其隐藏空间中的维度并没有和药物学中的概念对应;2)模型的训练速度慢,且不能通过离线训练来弥补这个缺点;3)只是单纯的运用数学原理解决问题,并没有将生物、药物中的信息加入模型。

3基于网络的方法

在过去的十几年中,基于网络的方法已成为预测药物敏感性的最常用方法之一。由于药物开发成本的增加和新批准药物的数量的减少,找出已上市药物的一些新价值变得十分有必要。其中一些方法有助于更恰当地设计独特的药物靶点组合和联合药物治疗,稳健的通道将改善特定患者的治疗。一些学者建议研究药物应用,疾病治疗与基因的关系。一些文献从生物系统和网络结构框架的角度分析了疾病的诊断、治疗和药物发现之间的关系。各种高通量数据的积累使生物分子和细胞网络的重建成为可能。基于网络的方法,通过化学相似性进行相关分析,可以为新药副作用的发现以及已上市药物重定位提供线索。基于网络的药物重定位方法可分为2类:1)基于药物-疾病相似性的方法;2)基于网络相似性推理的方法。

3.1基于药物-疾病相似性方法

近年来研究人员提出许多基于药物-疾病相似性的药物重定位方法,例如:Guney等引入了一种药物-疾病相似性度量,该度量可量化药物靶标与疾病之间的相互作用。该方法引入化学相似性进行关联,并且考虑了必要的生物信息,具有很强的系统性和综合性。实验结果表明基于网络的邻近度可以帮助我们量化药物的治疗效果并预测新的药物-疾病关联。Kotlyar等对药物如何破坏网络,以及基于网络的药物表征会直接影响参与结合的对象进行了总结。他们首次使用网络表征受药物差异调节的基因。李鹏在疾病网络的基础上基于质量作用定律,建立了基于网络扰动动力学模型的分析工具PerturbationAnalyzer。该方法通过整合定量蛋白质组学和蛋白相互作用网络数据,从蛋白质相互作用的浓度依赖关系出发,将蛋白浓度变化对网络扰动程度作为靶标辨识的重要依据。Chen等构建了一个通用的异构网络,该网络包含通过蛋白质-蛋白质序列相似性,药物-药物化学相似性和已知的药DTI而链接的药物和蛋白质,挖掘潜在的药物-疾病关联。

3.2基于网络相似性推理方法

很多研究人员把关注点放在网络相似性推理:Cheng等提出了一种基于网络的推理(network-based inference,NBI)方法,该方法仅使用药物-靶标二分网络拓扑相似性来推断已知药物的新靶标。Chen等基于Zhou等开发的推荐技术的推理方法,提出基于网络拓扑度量来预测直接的药物-疾病关联。他们通过挖掘有关药物-疾病两方网络特性的数据,将问题表述为推荐给特定药物的疾病。Wang等提出了一个基于异构网络模型的计算框架,这种计算框架可以捕获疾病、药物和靶标之间的相互关系,以预测新的药物使用情况。一些学者通过一些特殊案例,例如帕金森病,试图通过定位网络模块来重新定位药物。Yue等开发了针对失调的药物靶标网络通路或途径而非单个靶点的疗法,并建立了一个将全基因组关联分析数据与帕金森病患者3个脑区域的基因共表达模块整合在一起的框架。

基于网络相似性推理的方法便于理解,简单可靠,性能优于基于药物-疾病的方法和基于靶点相似性的方法。同时,研究人员可以根据具体研究的需要对网络输出的结果排序,但是基于网络推理的方法只适用在药物靶点关系已知的情况下,因此不能预测新药物的靶点,从而带来了很大的局限性。

4结语与展望

本文介绍了基于机器学习和大数据挖掘的药物重定位的研究进展。重点介绍基于特征的方法、基于矩阵完成的方法和基于网络的方法。在基于特征的方法中,无论是机器学习还是深度学习对数据的要求都比较高,需要专业人员设计标签,从而增加了药物研发的时间。基于矩阵完成的方法不用人为设定标签,研发时间相对其他方法也有所减少,但是矩阵完成只是单纯的引入数学计算,并没有将药物信息引入计算,可能导致计算结果和实际结果有一定偏差。基于网络推理的方法虽然简单可靠,便于理解,但是不能预测新药物的靶点,局限性很大。

随着大数据挖掘技术的发展,基于机器学习和大数据挖掘算法的药物重定位将为疾病的治疗提供更多更有效的方法,已经成为生物医学研究关注的焦点。有理由相信,理性推理和计算模型将在未来的药物重定位过程中发挥重要作用。另外,随着深度学习中无监督学习技术的发展,标签在深度学习处理海量数据方面的影响也越来越小,深度学习,特别是无监督学习与药物重定位结合将是未来研究的重点。



关于药学进展

感谢您阅读《药学进展》微信平台原创好文,也欢迎各位读者转载、引用。本文选自《药学进展》2020年第1期。

《药学进展》杂志是由中国药科大学和中国药学会共同主办、国家教育部主管,月刊,80页,全彩印刷。刊物以反映药学科研领域的新方法、新成果、新进展、新趋势为宗旨,以综述、评述、行业发展报告为特色,以药学学科进展、技术进展、新药研发各环节技术信息为重点,是一本专注于医药科技前沿与产业动态的专业媒体。

《药学进展》注重内容策划、加强组稿约稿、深度挖掘、分析药学信息资源、在药学学科进展、科研思路方法、靶点机制探讨、新药研发报告、临床用药分析、国际医药前沿等方面初具特色;特别是医药信息内容以科学前沿与国家战略需求相合,更加突出前瞻性、权威性、时效性、新颖性、系统性、实战性。根据最新统计数据,刊物篇均下载率连续三年蝉联我国医药期刊榜首,复合影响因子0.760,具有较高的影响力

《药学进展》编委会由国家重大专项化学药总师陈凯先院士担任主编,编委新药研发技术链政府监管部门、高校科研院所、制药企业、临床医院、CRO、由金融资本及知识产权相关机构百余位极具影响力的专家组成。

《药学进展》编辑部官网:www.cpupps.cn;邮箱:yxjz@163.com;电话:025-83271227。欢迎投稿、订阅!

想回顾《药学进展》编委会主办和协办过的精彩活动吗?请戳这里!

药咖访谈 | 专访缪晓辉教授:11个关于新冠肺炎的最新热点问题汇总,你想问的可能都在这里

 药咖访谈 | 执着务实,“晶”益求精 ——访中国药科大学张建军教授与高缘教授

→ 药咖访谈|“冷肿瘤”难治疗?可编程一体联动技术让“冷肿瘤”热起来!—访中国药科大学涂家生教授和孙春萌副教授

→ 药咖访谈 | 引领再生医学 重塑健康人生 ——访艾尔普再生医学科技有限公司CEO王嘉显博士


→ 【药闻大家谈】“临床药学建设·发展·变革高端论坛”在重庆隆重召开

→ 【药闻大家谈】“药学服务模式创新与未来药师价值体现高端论坛”隆重开幕

→ 【药咖风采】| 哈尔滨医科大学附属第二医院药学部蔡本志主任观点分享微视频

→ 【药咖风采】| 重庆医科大学第二附属医院药学部钱妍副主任观点分享微视频

→ 【药咖风采】| 上海交通大学附属第一人民医院临床药学科范国荣主任观点分享微视频

→ 【药咖风采】| 首都医科大学附属北京安贞医院药学部林阳主任观点分享微视频

→ 【药咖风采】| 南京正大天晴制药有限公司市场总监顾惊涛观点分享微视频

→ 【药咖风采】| 中国医科大学附属盛京医院药学部菅凌燕主任观点分享微视频

→ 【药咖风采】| 首都医科大学附属北京安贞医院药学部林阳主任观点分享微视频

→ 【药咖风采】| 中国医科大学附属盛京医院医学部副主任肇丽梅教授观点分享微视频  

→ 【药咖风采】| 首都医科大学附属北京天坛医院药学部赵志刚主任观点分享微视频

→ 【药咖风采】| 北部战区总医院药学部主任赵庆春教授观点分享微视频


→ 领跑生命科技,赋能健康产业 | 直击2019南京国际生命健康科技大会开幕式暨高峰论坛精彩现场

→ 领跑生命科技,赋能健康产业 |《药学进展》编委会暨“第五届药学前沿高峰论坛”精彩回顾(I)

→ 领跑生命科技,赋能健康产业 |《药学进展》编委会暨“第五届药学前沿高峰论坛”精彩回顾(II)

→ 领跑生命科技,赋能健康产业 |《药学进展》编委会暨“第五届药学前沿高峰论坛”精彩回顾(III)


→ “2019年厦门药学实践交流参访活动”成功举办


→ 重磅来袭 | 医药领域大咖聚首常州论道抗肿瘤新药研发“卡脖子”问题,听听他们都说了啥?


→  由《药学进展》编委会主办的侨界生物医药精英人才“赋能之旅”取得圆满成功!


→  钟山峰会|11个创新项目+10家专业机构的相见恨晚


→  《药学进展》编委聚首港城,助力连云港生物医药产业创新未来!


点一下你会更好看耶


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/62316
 
310 次点击