社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  Python

python3+dlib人脸识别及情绪分析

python • 7 年前 • 698 次点击  

识别规则

1、嘴巴张开距离占面部识别框宽度的比例越大,说明情绪越激动,可能是非常开心,也可能是极度愤怒。

2、眉毛上扬,17-21 或者 22-26 号特征点距离面部识别框顶部与识别框高度的比值越小,说明眉毛上扬越厉害,可表示惊讶、开心。眉毛的倾斜角度,开心时眉毛一般是上扬,愤怒时皱眉,同时眉毛下压的比较厉害。

3、眯眼睛,人在开怀大笑的时候会不自觉的眯起眼睛,愤怒或者惊讶的时候会瞪大眼睛。

系统缺点:不能捕捉细微表情的变化,只能大致的判断出人的情绪,开心、愤怒、惊讶、自然。

系统优点:结构简单,易于上手。

应用领域:微笑抓拍,捕捉瞬间的美好、缓解儿童自闭症、交互式游戏开发。

由于人感情的复杂性,这些表情确实不能完完全全的代表一个人内心深处的情绪波动,如要提高判断的准确性,则需要心率检测、语音处理等综合评价。


开发环境搭建


1、安装VS2015,因为最新版的dlib-19.10需要这个版本的vscode

2、安装opencv(whl方式安装):
从pythonlibs下载需要的版本whl文件,比如(opencv_python?3.3.0+contrib?cp36?cp36m?win_amd64.whl)
然后在本地使用pip install 安装。 注意文件位置下安装(如:C:\download\xxx.whl)

3、安装dlib(whl方式安装):
在这里下载dlib的各种版本的whl文件,然后在根目录下打开cmd直接安装即可。
但是为了学习使用dlib中的各种python实例程序,还是需要下载一个dlib的压缩包。
直接访问dlib官网即可下载:http://dlib.net/ml.html

dlib各种版本的whl文件:https://pypi.python.org/simple/dlib/

4、如果想要使用人脸模型特征标定的话,还需要一个人脸面部形状预测器,这个可以通过自己的照片进行训练,也可以使用dlib作者给出的一个训练好的预测器:         


实施思路

具体步骤

首先是利用dlib进行人脸识别:

然后实例化一个 shape_predictor 对象,使用dlib作者训练好人脸特征检测器,进行人脸的特征点标定。

标定的时候使用opencv的circle方法,在特征点的坐标上面添加水印,内容就是特征点的序号和位置。

到此,68个特征点的信息就获取到了,下面就需要跟根据这个68个特征点的坐标信息,进行综合 计算,作为每个表情的判断指标。

根据上面说到的我的判断指标,先计算嘴巴的张开比例,由于人离摄像头距离的远近,导致人脸识别框的大小不一,故选择比例来作为判断指标。

在选择指标的标准数值之前,先对多个开心的人脸照片进行分析。计算开心时的嘴巴张卡比例的平均。

下面是截取对人眉毛的数据处理方法,对左边眉毛上面的5个特征点进行线性拟合,拟合出一个一次函数直线,用拟合直线的斜率近似代表眉毛的倾斜程度。


我计算了25个人脸的开心表情的嘴巴张开比例、嘴巴宽度、眼睛张开程度、眉毛倾斜程度,导入excel表格生成折线图:

通过折线图能很明显的看出什么参数可以使用,什么参数的可信度不高,什么参数在那个范围内可以作为一个指标。

同样的方法,计算人愤怒、惊讶、自然时的数据折线图。

通过对多个不同表情数据的分析,得出每个指标的参考值,可以写出简单的表情分类标准:


识别之后:


源代码:

获取源码


作者:Andrew_qian

源自:www.cnblogs.com/qsyll0916/p/8893790.html

声明:文章著作权归作者所有,如有侵权,请联系小编删除



今天看啥 - 高品质阅读平台
本文地址:http://www.jintiankansha.me/t/9pQRhLPfiF
Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/10793
 
698 次点击