社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

你写的机器学习代码占多少内存?这件事很重要,但很多人还不懂

PaperWeekly • 3 年前 • 486 次点击  

作者 | Tirthajyoti Sarkar
编译 | 蛋酱
来源 | 机器之心



算法完美是重要的,但更重要的是成功部署,这篇文章能够帮助你了解有关代码内存占用的一切。

在进行机器学习任务时,你需要学会使用代码快速检查模型的内存占用量。原因很简单,硬件资源是有限的,单个机器学习模块不应该占用系统的所有内存,这一点在边缘计算场景中尤其重要。

比如,你写了一个很棒的机器学习程序,或者搭建了一个不错的神经网络模型,然后想在某些 Web 服务或 REST API 上部署模型。或者你是基于工厂传感器的数据流开发了模型,计划将其部署在其中一台工业计算机上。


这时,你的模型可能是硬件上运行的几百个模型之一,所以你必须对内存占用峰值有所了解。否则多个模型同时达到了内存占用峰值,系统可能会崩溃。


因此,搞清楚代码运行时的内存配置文件(动态数量)非常重要。这与模型的大小和压缩均无关,可能是你事先已经将其保存在磁盘上的特殊对象,例如 Scikit-learn Joblib dump、Python Pickle dump,TensorFlow HFD5 等。

Scalene:简洁的内存 / CPU/GPU 分析器

首先要讨论的是 Scalene,它是一个 Python 的高性能 CPU 和内存分析器,由马萨诸塞大学研发。其 GitHub 页面是这样介绍的:「 Scalene 是适用于 Python 的高性能 CPU、GPU 和内存分析器,它可以执行许多其他 Python 分析器无法做到的事情,提供详细信息比其他分析器快几个数量级。」

安装

它是一个 Python 包,所以按照通常方法安装:

pip install scalene

这样适用于 Linux OS,作者没有在 Windows 10 上进行测试。

在 CLI 或 Jupyter Notebook 内部使用 

Scalene 的使用非常简单:

scalene 

也可以使用魔术命令在 Jupyter notebook 中使用它:

%load_ext scalene

输出示例

下面是一个输出示例。稍后将对此进行更深入的研究。



这些是 Scalene 一些很酷的功能:


  • 行和函数:报告有关整个函数和每个独立代码行的信息;

  • 线程:支持 Python 线程;

  • 多进程处理:支持使用 multiprocessing 库;

  • Python 与 C 的时间:Scalene 用在 Python 与本机代码(例如库)上的时间;

  • 系统时间:区分系统时间(例如,休眠或执行 I / O 操作);

  • GPU:报告在英伟达 GPU 上使用的时间(如果有);

  • 复制量:报告每秒要复制的数据量;

  • 泄漏检测:自动查明可能造成内存泄漏的线路。


ML 代码具体示例

接下来看一下 Scalene 用于内存配置标准机器学习代码的工作。对三个模型使用 Scikit-learn 库,并利用其综合数据生成功能来创建数据集。

对比的是两种不同类型的 ML 模型:

  • 多元线性回归模型;

  • 具有相同数据集的深度神经网络模型。




线性回归模型

使用标准导入和 NUM_FEATURES 、 NUM_SMPLES 两个变量进行一些实验。



这里没有展示数据生成和模型拟合代码,它们是非常标准的。作者将拟合的模型另存为 pickled dump,并将其与测试 CSV 文件一起加载以进行推断。



为了清晰起见,将所有内容置于 Scalene 执行和报告环境下循环运行。


当运行命令时:

$ scalene linearmodel.py --html >> linearmodel-scalene.html

将这些结果作为输出。注意,此处使用了 --html 标志并将输出通过管道传输到 HTML 文件,以便于报告。



令人惊讶的是,内存占用几乎完全由外部 I / O(例如 Pandas 和 Scikit-learn estimator 加载)控制,少量会将测试数据写到磁盘上的 CSV 文件中。实际的 ML 建模、Numpy、Pandas 操作和推理,根本不会影响内存。


我们可以缩放数据集大小(行数)和模型复杂度(特征数),并运行相同的内存配置文件以记录各种操作在内存消耗方面的表现。结果显示在这里。

此处,X 轴代表特征 / 数据点集。注意该图描绘的是百分比,而不是绝对值,展示了各种类型操作的相对重要性。


从这些实验中得出的结论是,Scikit-learn 线性回归估计非常高效,并且不会为实际模型拟合或推理消耗大量内存。

但就代码而言,它确实有固定的内存占用,并在加载时会消耗大量内存。不过随着数据大小和模型复杂性的增加,整个代码占用百分比会下降。如果使用这样的模型,则可能需要关注数据文件 I / O,优化代码以获得更好的内存性能。

深度神经网络如何?


如果我们使用 2 个隐藏层的神经网络(每个隐藏层有 50 个神经元)运行类似的实验,那么结果如下所示。

代码地址:https://github.com/tirthajyoti/Machine-Learning-with-Python/blob/master/Memory-profiling/Scalene/mlp.py


与线性回归模型不同,神经网络模型在训练 / 拟合步骤中消耗大量内存。但是,由于特征少且数据量大,拟合占用的内存较少。此外,还可以尝试各种体系结构和超参数,并记录内存使用情况,达到合适的设置。


复现说明

如果你使用相同的代码复现实验,结果可能会因硬件、磁盘 / CPU / GPU / 内存类型的不同而大相径庭。

一些关键建议 

  • 最好在代码中编写专注于单个任务的小型函数;

  • 保留一些自由变量,例如特征数和数据点,借助最少的更改来运行相同的代码,在数据 / 模型缩放时检查内存配置文件;

  • 如果要将一种 ML 算法与另一种 ML 算法进行比较,请让整体代码的结构和流程尽可能相同以减少混乱。最好只更改 estimator 类并对比内存配置文件;

  • 数据和模型 I / O(导入语句,磁盘上的模型持久性)在内存占用方面可能会出乎意料地占主导地位,具体取决于建模方案,优化时切勿忽略这些;

  • 出于相同原因,请考虑比较来自多个实现 / 程序包的同一算法的内存配置文件(例如 Keras、PyTorch、Scikitlearn)。如果内存优化是主要目标,那么即使在功能或性能上不是最佳,也必须寻找一种占用最小内存且可以满意完成工作的实现方式;

  • 如果数据 I / O 成为瓶颈,请探索更快的选项或其他存储类型,例如,用 parquet 文件和 Apache Arrow 存储替换 Pandas CSV。可以看看这篇文章:


《How fast is reading Parquet file (with Arrow) vs. CSV with Pandas?》
https://towardsdatascience.com/how-fast-is-reading-parquet-file-with-arrow-vs-csv-with-pandas-2f8095722e94


Scalene 能做的其他事

在本文中,仅讨论了内存分析的一小部分,目光放在了规范机器学习建模代码上。事实上 Scalene CLI 也有其他可以利用的选项:

  • 仅分析 CPU 时间,不分析内存;

  • 仅使用非零内存减少资源占用;

  • 指定 CPU 和内存分配的最小阈值;

  • 设置 CPU 采样率;

  • 多线程并行,随后检查差异。


最终验证(可选)

在资源较少的情况下,你最好托管一个验证环境 / 服务器,该服务器将接受给定的建模代码(如已开发),并通过这样的内存分析器运行它以创建运行时统计信息。如果它通过内存占用空间的预定标准,则只有建模代码会被接受用于进一步部署。



总结

在本文中,我们讨论了对机器学习代码进行内存配置的重要性。我们需要使其更好地部署在服务和机器中,让平台或工程团队能够方便运用。分析内存也可以让我们找到更高效的、面向特定数据或算法的优化方式。

希望你能在使用这些工具和技术进行机器学习部署时能够获得成功。

原文链接:https://towardsdatascience.com/how-much-memory-is-your-ml-code-consuming-98df64074c8f



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编





🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧



关于PaperWeekly


PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。



Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/116139
 
486 次点击