社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

【期刊】基于深度学习的器官芯片应用新进展—西北工业大学黄维院士团队 | Research

蔻享学术 • 3 年前 • 831 次点击  






近期,西北工业大学柔性电子前沿科学中心的黄维院士、彭勃副教授、李林教授课题组发表了综述文章,详细且全面地介绍、分析并总结了将深度学习算法应用于器官芯片的最新研究进展,并对这一新型交叉领域的未来发展方向进行了展望,相关综述以“An Overview of Organs-on-Chips Based on Deep Learning” 为题发表在Research上。


Citation: Jintao Li, Jie Chen, Hua Bai, Haiwei Wang, Shiping Hao, Yang Ding, Bo Peng, Jing Zhang, Lin Li, Wei Huang, "An Overview of Organs-on-Chips Based on Deep Learning", Research, vol. 2022, Article ID 9869518, 20 pages, 2022. https://doi.org/10.34133/2022/9869518


研究背景

生物实验中使用最广泛的疾病模型是二维细胞模型与动物模型,是绝大多数药物进入临床研究的“必修课”。但它们都有一定的局限性:细胞模型在生物医学研究中有一定的价值,但它不能充分地模拟人体器官组织的复杂生理结构与功能;动物模型是目前许多生物学研究的金标准,但存在成本高、通量低、动物伦理、种间差异等问题,极大地限制了药物开发和其他生物学研究的进展。长久以来,疾病模型的缺陷极大地提高了新药研发的成本并限制了病理学的研究。


在这一背景下,器官芯片(Organs-on-Chips, OoCs)的出现弥补了一般疾病模型的缺陷。器官芯片是在微流控技术(Microfluidics)的发展过程中,与光刻技术、细胞生物学、材料和生物组织工程等技术相结合的产物。作为一种微流控细胞培养装置,器官芯片包含连续的灌注腔室,具有多细胞层结构和组织界面,可以复现器官的局部结构特征;通过精确控制多细胞生长环境参数、组织机械力,从而实现体内器官的复杂生理功能的高度模拟。其优点众多,例如能耗低、体积小、反应速度快、即用即弃等。作为高通量生物研究平台,器官芯片在生命科学研究、疾病模拟、毒性预测、新药研发及精准医疗等方面具有广阔的发展前景。2016 年,器官芯片入选了达沃斯论坛年度十大新兴技术之一,与目前风头正盛的两大新兴技术——新燃料电池和无人驾驶汽车并驾齐驱。


但是,器官芯片反应速度快、高通量的特点所产生巨量的数据,加上精确控制组织微环境所需的自动化方案,已经远远超出了具有生物医学背景的研究人员在短时间内进行人工分析的范畴。因此,器官芯片急需寻找一个可以辅助、甚至代替研究人员进行分析判断的工具,从而提升实验效率和准确度。随着计算机算力的提升和大数据时代的到来,通过计算机代替人类完成一些任务不再是痴人说梦。人工智能(Artificial Intelligence)近年来在计算机视觉、自然语言处理、语音识别等多个领域都得到了广泛应用,并成功地 实现了商业化, 是“第四次工业革命”中的关键技术。深度学习(Deep Learning)作为目前人工智能领域中最炙手可热的算法,建立深层人工神经网络进行分析学习,从而模拟视听和思考等人类的活动。由于其强大的特征表示能力和数据挖掘能力,在计算机视觉、自然语言处理、语音识别领域都已经得到了广泛的应用,使得人工智能相关技术取得了很大进步。


因此,将深度学习技术作为探索和分析器官芯片实验数据的有力工具,可以有效挖掘海量数据背后所隐含的内在规律,提升器官芯片的智能化水平,并激发其在药物开发、疾病建模和个性化医疗方面的巨大潜力(图1)。

图1  基于深度学习的器官芯片


研究进展与展望

本文从四个方面介绍了这一领域的研究进展。


1.微流控技术和以其为技术支撑的器官芯片装置。与传统疾病模型进行对比后,可直观地发现器官芯片的特性与优势。目前限制了器官芯片的发展瓶颈之一是:高通量的实验平台带来了巨量数据和人为的实验误差。


2.系统地讲述了深度学习算法的发展历程,并在其中穿插讲解了算法原理及一些经典的实现深度学习的神经网络模型。


3.对目前各种适用于器官芯片,或已经用于部分器官芯片分析的深度学习算法进行了介绍、分析和总结。本文以应用场景的不同、器官芯片设备的升级、深度学习算法的复杂度为分类依据,循序渐进地对相关应用进行了介绍,有助于对不同应用之间进行对比分析。通过目标任务(预测、到目标识别、到图像分割、到跟踪)的实现难度,对已有的基于深度学习的器官芯片应用进行分类(图2)。

图2  交叉应用的总结分类

4.从细胞器的识别与监测、微流控细胞培养系统的自动化与智能化、药物开发、罕见病的诊断以及多器官芯片耦合的人体芯片等不同角度,为这一新型交叉应用的未来发展方向进行展望。


作者简介









黄维,中国科学院院士,俄罗斯科学院外籍院士,中国有机电子学与柔性电子学的主要奠基者,西北工业大学教授、博士生导师,国家杰出青年科学基金获得者,国家“973计划”项目首席科学家。主要研究领域为纳米材料与技术和有机电子与器件等。在有机光电子学、柔性电子学等领域取得了大量系统性、创新性的研究成果。



李林南京工业大学先进材料研究院教授,课题组主要关注“合成小分子生物功能调节的生物医学光子学”研究,涵盖生物光子学/有机化学/药物化学/蛋白质工程,专注线粒体特异性的病理学生物体系显影新方法在早期诊疗和转化新药开发中的应用。在Journal of the American Chemical Society, Angewandte Chemie International Edition, Chemical Society Reviews, Nature Communications, Accounts of Chemical Research, Advanced materials等期刊上累计发表SCI收录论文200余篇,申请/授权专利41/12项。




彭勃,西北工业大学副教授, 研究工作致力于在化学生物学、分子生物学以及材料科学的学科界面间,探索生物医学工程微纳器件在药物评价平台和诊断工具研发中的应用,从而实现对多种重大疾病的诊疗新策略。近五年以第一/通讯作者相继在Angew. Chem. Int. Ed.、Chem. Soc. Rev.、Trends Biotechnol.、Chem. Sci.等国际期刊上发表论文14篇。


期刊简介

《Research》是中国科协与美国科学促进会于2018年共同创办的定位为国际化、高影响力、世界一流水平、综合性、大型OA科技期刊,是美国《Science》自1880年创刊以来第一本合作期刊。主要发表先进能源、先进制造、先进材料、人工智能、环境科学、柔性电子、健康科学、信息科学、微纳科技、量子信息、空间科学,11个热点交叉领域突破性原创研究成果。主编(中国)为中国科协副主席,中国科学院院士包为民,主编(国际)为美国明尼苏达大学麦克凯特杰出教授崔天宏。第二届编委会由许宁生、高松、黄如、李兰娟、饶子和、俞书宏、崔铁军等国内外50余位院士在内的170位编委组成。被CAS、CNKI、CSCD、DOAJ、EI、SCIE、INSPEC、PMC、Scopus、SAO/NASA Astrophysics Data System数据库收录。


欢迎相关领域的科学家们踊跃投稿,关注和使用期刊的出版内容。

网址:

https://spj.sciencemag.org/research/

e-ISSN: 2639-5274

p-ISSN: 2096-5168

CN: 10-1541/N

DOI Prefix: 10.34133

Research科学研究

关注交叉学科热点领域


扩展阅读

 

1. 更聪明的巴甫洛夫狗:南京大学施毅、李昀团队提出了一种全新的平面双端联想型有机神经形态器件 | Research

2. 基于分级多孔凝胶的肝癌器官芯片|东南大学赵远锦教授课题组新进展 | Research

3. 利用劈裂碳纳米管中挠曲电场驱动的Fano共振实现退耦合多功能传感 | Research

4. 可实现宽范围和多色延时发光的有机磷光体掺杂无机骨架新型杂化材料|北京师范大学闫东鹏课题组新进展 | Research

5. 可穿戴表情识别策略新进展|华中科技大学黄永安教授团队与首都师范大学谭小慧团队合作新突破 | Research

蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。



版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!


原创文章首发于蔻享学术,仅代表作者观点,不代表蔻享学术立场。

转载请在『蔻享学术』公众号后台留言。


点击阅读原文~发现惊喜!

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/131692
 
831 次点击