社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

百度CTO王海峰:深度学习平台加大模型,夯实数实融合基座

飞桨PaddlePaddle • 2 年前 • 390 次点击  
11月30日,由深度学习技术及应用国家工程研究中心主办的WAVE SUMMIT+ 2022深度学习开发者峰会如期举行。
鹏城实验室主任、中国工程院高文院士,深圳大学电子与信息工程学院院长、深度学习技术及应用国家工程研究中心技术委员会副主任、中国工程院丁文华院士受邀致辞,百度首席技术官、深度学习技术及应用国家工程研究中心主任王海峰发表题为《深度学习平台加大模型,产业智能化基座》的主旨演讲。

高文院士指出,开发者是开源生态发展的核心力量,也是技术创新的骨干力量。现阶段,建设好我国自主创新的软硬件基础平台至关重要。飞桨全面开源开放,凝聚众多开发者,核心技术扎实,面向产业做了很多领先的工作,并积极探索与科学计算等基础研究的结合。文心多个大模型将上线鹏城云脑,并联合发布飞桨-鹏城云脑发行版。

丁文华院士在致辞中表示,深度学习技术及应用国家工程研究中心,是国家科技创新体系的重要组成部分。飞桨平台作为工程研究中心的核心研究成果,在保障国家信息科技安全、推动人工智能应用大规模落地方面发挥了重要作用。AI领域的底层核心技术,发展主动权必须掌握在自己手里。具有自主知识产权的核心技术,是核心竞争力的源头活水。

王海峰公布了飞桨生态的最新进展:截至目前,飞桨已凝聚535万开发者,服务20万家企事业单位,基于飞桨创建了67万个模型。开发者、科研院所、企事业单位、技术伙伴、硬件厂商等等,既是飞桨生态的建设者,也是受益者。飞桨构建了全方位的生态体系,产学研协同,共创、共生、共赢。

当前,深度学习生态持续繁荣、AI技术进一步突破,产业应用亟需再上新台阶。对此,王海峰指出,深度学习平台加上大模型,贯通从硬件适配、模型训练、推理部署到场景应用的AI全产业链,夯实产业智能化基座,将进一步加速智能化升级。

大模型产业化夯实数实融合基座

深度学习平台是基础共性平台,下接芯片,上承应用,起到承上启下的作用,相当于智能时代的操作系统,有力支撑产业智能化升级。
大模型是近几年人工智能发展的重要方向,具有效果好、泛化性强、研发流程标准化的特点,为人工智能的进一步发展带来了新机遇。此外,大模型对深度学习模型的开发、训练和推理部署提出了更高要求,牵引着深度学习平台的发展方向。
但与此同时,大模型研发依赖算法、算力和数据综合支撑,在应用层面上也面临一系列技术挑战:首先是数据规模大,数据质量参差不齐;其次是模型体积大,算法难度高;第三是算力规模大,性能要求高。
如何实现大模型产业化?王海峰认为,具有算法、算力和数据综合优势的企业,可以将模型生产的复杂过程封装起来,通过低门槛、高效率的生产平台,为千行百业提供大模型服务,从而形成一条大模型产业化路径。
这一产业化路径已经在文心大模型的产业实践中得到验证。基于飞桨平台,百度打造了文心产业级知识增强大模型,包括以鹏城-百度·文心为代表的通用大模型、跨模态大模型、生物计算大模型,联合共建的行业大模型,以及适配场景应用的工具套件、大模型API、基于大模型的产品、探索生态共建的创意社区等。

“让大模型的落地像流水线一样高效”

目前,文心大模型已大规模应用于搜索、信息流、智能音箱等互联网产品,并通过飞桨开源开放平台、百度智能云赋能制造、能源、金融、通信、媒体、城市、教育等各行各业。随着应用场景的进一步扩大,文心大模型已联合打造超过10个行业大模型,不断从行业及企业的特有数据和知识中融合学习,模型能力进一步增强,助力企业降本增效,加快行业转型升级。

在大模型迅猛发展的当下,支撑大模型开发、训练和推理部署的飞桨深度学习平台也在持续进化,优势更加显著:动静统一的开发范式、自适应分布式架构、异构设备负载均衡等,实现大模型的灵活开发和高效训练;高并发弹性服务化部署、软硬协同稀疏量化加速、自适应蒸馏裁剪等,实现高效部署。

为了让大模型产业落地更高效便捷,飞桨提供了全流程产业化工具与平台,包括大模型开发套件、场景模型生产线等,极大降低应用门槛。王海峰指出,通过高效构建与快速迭代基于大模型的多样化场景模型,让大模型的落地像流水线一样高效。
正如王海峰所言,飞桨平台与文心大模型,“坚持技术上突破创新,生态上培育耕耘,夯实智能化基座,让每一位开发者、让致力于科技创新和产业发展的社会各界,都能够在自主的基础底座上大展宏图,努力实现高水平科技自立自强,推动经济社会高质量发展。”

关注【飞桨PaddlePaddle】公众号
获取更多技术内容~


Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/149984
 
390 次点击