Py学习  »  机器学习算法

机器学习学术速递[9.3]

arXiv每日学术速递 • 2 天前 • 102 次点击  

点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.LG 方向,今日共计380篇


大模型相关(36篇)

【1】Jointly Reinforcing Diversity and Quality in Language Model Generations
标题:共同增强语言模型生成的多样性和质量
链接:https://arxiv.org/abs/2509.02534

作者:Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack Lanchantin, Tianlu Wang
备注:29 pages, 11 figures


【2】Comparative Study of Pre-Trained BERT and Large Language Models for Code-Mixed Named Entity Recognition
标题:预训练BERT和大语言模型用于混合代码命名实体识别的比较研究
链接:https://arxiv.org/abs/2509.02514

作者:rke, Amey Shembade, Pavan Thorat, Madhushri Wagh, Raviraj Joshi


【3】MLP-Offload: Multi-Level, Multi-Path Offloading for LLM Pre-training to Break the GPU Memory Wall
标题:MLP卸载:LLM预训练的多级别、多路径卸载,以打破图形处理器内存墙
链接:https://arxiv.org/abs/2509.02480

作者:aurya, M. Mustafa Rafique, Franck Cappello, Bogdan Nicolae
备注:SC'25: The International Conference for High Performance Computing,   Networking, Storage and Analysis


【4】Do LLMs Adhere to Label Definitions? Examining Their Receptivity to External Label Definitions
标题:LLM遵守标签定义吗?检查其对外部标签定义的接受性
链接:https://arxiv.org/abs/2509.02452

作者:Mohammadi, Bhaskara Hanuma Vedula, Hemank Lamba, Edward Raff, Ponnurangam Kumaraguru, Francis Ferraro, Manas Gaur
备注:To appear in EMNLP 2025, Main Conference


【5】An Ensemble Classification Approach in A Multi-Layered Large Language Model Framework for Disease Prediction
标题:用于疾病预测的多层大型语言模型框架中的整体分类方法
链接:https://arxiv.org/abs/2509.02446

作者:, Malak Mohamed, Rokaia Emad, Khaled Shaban


【6】Cache Management for Mixture-of-Experts LLMs -- extended version
标题:专家混合LLM的缓存管理-扩展版本
链接:https://arxiv.org/abs/2509.02408

作者:gelopoulos, Loris Marchal, Adrien Obrecht, Bertrand Simon


【7】Scale, Don't Fine-tune: Guiding Multimodal LLMs for Efficient Visual Place Recognition at Test-Time
标题:规模,不要微调:指导多模式LLM在测试时实现高效的视觉位置识别
链接:https://arxiv.org/abs/2509.02129

作者:eng, Weibin Li, Jiehao Luo, Xiaoyu Tang, Zhijian He, Jin Wu, Yao Zou, Wei Zhang


【8】When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
标题:当LLM遇到时间序列时:LLM能否执行多步时间序列推理和推理
链接:https://arxiv.org/abs/2509.01822

作者 :inbo Liu, Defu Cao, Wei Yang, Yan Liu


【9】Flaw or Artifact? Rethinking Prompt Sensitivity in Evaluating LLMs
标题:缺陷还是毛刺?重新思考评估LLM的即时敏感性
链接:https://arxiv.org/abs/2509.01790

作者:a, Kenan Tang, Chenhe Gu, Jindong Gu, Eric Wong, Yao Qin
备注:Accepted to EMNLP 2025 Main Conference


【10】Communication-Aware Knowledge Distillation for Federated LLM Fine-Tuning over Wireless Networks
标题:无线网络上的联邦LLM微调的通信感知知识提炼
链接:https://arxiv.org/abs/2509.01750

作者:ng, Na Yan, Yang Su, Yansha Deng, Toktam Mahmoodi


【11】Benchmarking Optimizers for Large Language Model Pretraining
标题:大型语言模型预训练的基准优化器
链接:https://arxiv.org/abs/2509.01440

作者:menov, Matteo Pagliardini, Martin Jaggi
备注:73 pages, 44 figures, 48 tables


【12】DPF-CM: A Data Processing Framework with Privacy-Preserving Vector Databases for Chinese Medical LLMs Training and Deployment
标题:DPF-CM:用于中国医学LLM训练和部署的具有隐私保护载体数据库的数据处理框架
链接:https://arxiv.org/abs/2509.01354

作者:, Anda Cheng, Zhao Zhang, Yinggui Wang
备注:Accepted by EMNLP 2025


【13】Iterative In-Context Learning to Enhance LLMs Abstract Reasoning: The Case-Study of Algebraic Tasks
标题:迭代上下文学习增强LLM抽象推理:代数任务的案例研究
链接:https://arxiv.org/abs/2509.01267

作者:ioravanti, Matteo Zavatteri, Roberto Confalonieri, Kamyar Zeinalipour, Paolo Frazzetto, Alessandro Sperduti, Nicolò Navarin
备注:Preprint. Under review


【14】LiquidGEMM: Hardware-Efficient W4A8 GEMM Kernel for High-Performance LLM Serving
标题:LiquidGEMM:硬件高效的W4 A8 GEMM内核,用于高性能LLM服务
链接:https://arxiv.org/abs/2509.01229

作者:, Bowen Xiao, Shixuan Sun, Jianian Yin, Zhexi Zhang, Xiang Luo, Chengquan Jiang, Weiqi Xu, Xiaoying Jia, Xin Liu, Minyi Guo
备注:12 pages, 13 figures


【15】DaMoC: Efficiently Selecting the Optimal Large Language Model for Fine-tuning Domain Taks Based on Data and Model Compression
标题:DaMoC:基于数据和模型压缩有效选择最佳大型语言模型进行微调领域获取
链接:https://arxiv.org/abs/2509.01221

作者:, Huang Wei, Yinggui Wang
备注:Accepted by EMNLP 2025


【16】Do Video Language Models Really Know Where to Look? Diagnosing Attention Failures in Video Language Models
标题:视频语言模型真的知道去哪里看吗?诊断视频语言模型中的注意力故障
链接:https://arxiv.org/abs/2509.01167

作者:Ok, Jaeho Lee
备注:preprint


【17】Analysis of Error Sources in LLM-based Hypothesis Search for Few-Shot Rule Induction
标题 :基于LLM的Few-Shot规则归纳假设搜索中的误差源分析
链接:https://arxiv.org/abs/2509.01016

作者:rab, Hongjing Lu, Ying Nian Wu, Sumit Gulwani
备注:This is the preprint version corresponding to our NeurIPS 2025 Workshop on Multimodal Algorithmic Reasoning submission


【18】Self-Exploring Language Models for Explainable Link Forecasting on Temporal Graphs via Reinforcement Learning
标题:基于强化学习的时态图可解释链接预测的自探索语言模型
链接:https://arxiv.org/abs/2509.00975

作者:ng, Shenyang Huang, Zeyu Cao, Emma Kondrup, Zachary Yang, Xingyue Huang, Yuan Sui, Zhangdie Yuan, Yuqicheng Zhu, Xianglong Hu, Yuan He, Farimah Poursafaei, Michael Bronstein, Andreas Vlachos


【19】SATQuest: A Verifier for Logical Reasoning Evaluation and Reinforcement Fine-Tuning of LLMs
标题:SATQuest:LLM逻辑推理评估与强化微调验证器
链接:https://arxiv.org/abs/2509.00930

作者:hao, Yaqian Li, Zihao Bo, Rinyoichi Takezoe, Haojia Hui, Mo Guang, Lei Ren, Xiaolin Qin, Kaiwen Long


【20】CaresAI at BioCreative IX Track 1 -- LLM for Biomedical QA
标题:CaresAI在BioCreative IX Track 1 --生物医学QA法学硕士
链接:https://arxiv.org/abs/2509.00806

作者:l-Salam, Mary Adewunmi, Modinat A. Abayomi
备注:Proceedings of the BioCreative IX Challenge and Workshop (BC9): Large Language Models for Clinical and Biomedical NLP at the International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Canada, 2025


【21】Efficient Graph Understanding with LLMs via Structured Context Injection
标题:基于结构化上下文注入的LLM的高效图理解
链接:https://arxiv.org/abs/2509.00740

作者:ghmare, Sumedh BG, Sonia Gupta, Srikanta Bedathur


【22】Universal Properties of Activation Sparsity in Modern Large Language Models
标题:现代大型语言模型中激活稀疏性的普遍性质
链接:https://arxiv.org/abs/2509.00454

作者:tkowski, Patryk Będkowski, Alessio Devoto, Jan Dubiński, Pasquale Minervini, Mikołaj Piórczyński, Simone Scardapane, Bartosz Wójcik


【23】Metis: Training Large Language Models with Advanced Low-Bit Quantization
标题:Metis:利用高级低位量化训练大型语言模型
链接:https://arxiv.org/abs/2509.00404

作者:ao, Mengyi Chen, Yifeng Yang, Ruijun Huang, Fang Dong, Jixian Zhou, Anrui Chen, Mingzhi Dong, Yujiang Wang, Jinlong Hou, Yuan Cheng, Fan Wu, Fan Yang, Tun Lu, Ning Gu, Li Shang


【24】The Resurgence of GCG Adversarial Attacks on Large Language Models
标题:GCG对大型语言模型的对抗性攻击的卷土重来
链接:https://arxiv.org/abs/2509.00391

作者:n, Xuying Li, Zhuo Li, Huizhen Shu, Peikang Hu
备注:12 pages, 5 figures


【25】LLM-Driven Policy Diffusion: Enhancing Generalization in Offline Reinforcement Learning
标题:法学硕士驱动的政策传播:增强离线强化学习的概括性
链接:https://arxiv.org/abs/2509.00347

作者:hang, Yuhong Guo


【26】Mechanistic interpretability for steering vision-language-action models
标题:引导视觉-语言-动作模型的机械可解释性
链接:https://arxiv.org/abs/2509.00328

作者:, Kaylene Stocking, Ian Chuang, Claire Tomlin
备注:CoRL 2025. Project website: this https URL


【27】Learning to Shard: RL for Co-optimizing the Parallelism Degrees and Per-operator Sharding Dimensions in Distributed LLM Inference
标题:学习碎片:RL用于在分布式LLM推理中协同优化并行度和每个操作员碎片维度
链接:https://arxiv.org/abs/2509.00217

作者:n, Sattwik Deb Mishra, Xuan Zuo, Hokchhay Tann, Preyas Shah, Apala Guha


【28】Pre-trained knowledge elevates large language models beyond traditional chemical reaction optimizers
标题:预先训练的知识将大型语言模型提升到传统化学反应优化器之外
链接:https://arxiv.org/abs/2509.00103

作者:cKnight, Jose Emilio Regio, Jeffrey G. Ethier, Luke A. Baldwin, Gabe Gomes
备注:19 pages, 7 figures


【29】LLM-QUBO: An End-to-End Framework for Automated QUBO Transformation from Natural Language Problem Descriptions
标题:LLM-QUBO:从自然语言问题描述自动进行QUBO转换的端到端框架
链接:https://arxiv.org/abs/2509.00099

作者:Zhang, Mahzabeen Emu, Salimur Choudhury


【30】Pruning Weights but Not Truth: Safeguarding Truthfulness While Pruning LLMs
标题:修剪权重而不是真相:在修剪LLM的同时保护真实性
链接:https://arxiv.org/abs/2509.00096

作者:unchao Li, Xianxuan Long, Haotian Yu, Xiaotian Han, Yu Yin, Pan Li
备注:Accepted to EMNLP2025 findings (poster)


【31】Learning to Refine: Self-Refinement of Parallel Reasoning in LLMs
标题:学习完善:LLM中并行推理的自我完善
链接:https://arxiv.org/abs/2509.00084

作者:g, Pu Zhao, Shaohan Huang, Fangkai Yang, Lu Wang, Furu Wei, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang


【32】Language and Experience: A Computational Model of Social Learning in Complex Tasks
标题:语言与经验:复杂任务中社会学习的计算模型
链接:https://arxiv.org/abs/2509.00074

作者:las, Tracey Mills, Ben Prystawski, Michael Henry Tessler, Noah Goodman, Jacob Andreas, Joshua Tenenbaum


【33】AnomalyExplainer Explainable AI for LLM-based anomaly detection using BERTViz and Captum
标题:AnomalyExplainer使用BERTViz和Captum进行基于LLM的异常检测的可解释人工智能
链接:https://arxiv.org/abs/2509.00069

作者: Balasubramanian, Dumindu Kankanamge, Ekaterina Gilman, Mourad Oussalah


【34】Exploring and Reshaping the Weight Distribution in LLM
标题:探索和重塑LLM中的权重分布
链接:https://arxiv.org/abs/2509.00046

作者:Ye, Songzhou Li, Xu Xu
备注:19 pages,16 figures


【35】Diagnosing Psychiatric Patients: Can Large Language and Machine Learning Models Perform Effectively in Emergency Cases?
标题:诊断精神病患者:大型语言和机器学习模型能否在紧急情况下有效执行?
链接:https://arxiv.org/abs/2509.00026

作者:Ahammed, Sayeri Mukherjee, Roman Obermaisser


【36】NoLBERT: A No Lookahead(back) Foundational Language Model for Empirical Research
标题:NoLBERT:一个不向前看(向后)的实证研究基础语言模型
链接:https://arxiv.org/abs/2509.01110

作者:od, Peiyao Li


Graph相关(图学习|图神经网络|图优化等)(22篇)

【1】HydroGAT: Distributed Heterogeneous Graph Attention Transformer for Spatiotemporal Flood Prediction
标题:HydroGAT:用于时空洪水预测的分布式异类图注意力Transformer
链接:https://arxiv.org/abs/2509.02481

作者: Sarkar, Autrin Hakimi, Xiaoqiong Chen, Hai Huang, Chaoqun Lu, Ibrahim Demir, Ali Jannesari
备注:Accepted to The 33rd ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL 25)


【2】Exploring Variational Graph Autoencoders for Distribution Grid Data Generation
标题:探索用于配电网数据生成的变分图自动编码器
链接:https://arxiv.org/abs/2509.02469

作者: Abbas, Ehimare Okoyomon


【3】HiGraph: A Large-Scale Hierarchical Graph Dataset for Malware Analysis
标题:HiGraph:一个用于恶意软件分析的大规模层次图数据集
链接:https://arxiv.org/abs/2509.02113

作者: Hanchen Wang, Hongmei Chen, Ying Zhang, Lu Qin, Wenjie Zhang


【4】Second-Order Tensorial Partial Differential Equations on Graphs
标题:图上的二阶张量偏方程
链接:https://arxiv.org/abs/2509.02015

作者:zade, Fragkiskos D. Malliaros, Jhony H. Giraldo
备注:12 pages, 1 figure


【5】ACA-Net: Future Graph Learning for Logistical Demand-Supply Forecasting
标题:ACA-Net:物流供需预测的未来图学习
链接:https://arxiv.org/abs/2509.01997

作者:Shi, Haibin Wei, Jiang Wang, Xiaowei Xu, Longzhi Du, Taixu Jiang
备注:12 pages, DASFAA2025 conference full paper


【6】TransGAT: Transformer-Based Graph Neural Networks for Multi-Dimensional Automated Essay Scoring
标题:TransGAT:基于转换器的图神经网络用于多维自动论文评分
链接:https://arxiv.org/abs/2509.01640

作者:aid, Areej Alhothali, Ohoud Al-Zamzami, Hussein Assalahi


【7】Ultra Fast Warm Start Solution for Graph Recommendations
标题:图形推荐的超快速热启动解决方案
链接:https://arxiv.org/abs/2509.01549

作者:v Yusupov, Maxim Rakhuba, Evgeny Frolov
备注:Accepted to CIKM 2025


【8】Graph Contrastive Learning versus Untrained Baselines: The Role of Dataset Size
标题:图表对比学习与未经训练的基线:数据集大小的作用
链接:https://arxiv.org/abs/2509.01541

作者:anna, Doruk Efe Gökmen, Risi Kondor, Vincenzo Vitelli
备注:12 pages, 5 figures


【9】Learn to Jump: Adaptive Random Walks for Long-Range Propagation through Graph Hierarchies
标题:学习跳跃:通过图层次进行远程传播的自适应随机游走
链接:https://arxiv.org/abs/2509.01381

作者:ys, Federico Errica
备注:Presented at ComBayNS Workshop (oral) at IJCNN 2025


【10】MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
标题:MatPROV:从科学文献中提取的材料合成源图数据集
链接:https://arxiv.org/abs/2509.01042

作者:Tsuruta, Masaya Kumagai


【11】Superposition in Graph Neural Networks
标题:图神经网络中的叠加
链接:https://arxiv.org/abs/2509.00928

作者:tl, Han Xuanyuan, Pietro Liò


【12】Flow Matters: Directional and Expressive GNNs for Heterophilic Graphs
标题:Flow Matters:异嗜性图的方向性和表达性GNN
链接:https://arxiv.org/abs/2509.00772

作者:ta, Govind Waghmare, Gaurav Oberoi, Nitish Srivastava


【13】Task-Aware Adaptive Modulation: A Replay-Free and Resource-Efficient Approach For Continual Graph Learning
标题:任务感知自适应调制:连续图形学习的免回放且资源高效的方法
链接:https://arxiv.org/abs/2509.00735

作者:iu, Xinming Zhang


【14】RoFt-Mol: Benchmarking Robust Fine-Tuning with Molecular Graph Foundation Models
标题:RoFt-Mol:利用分子图基础模型进行稳健微调基准
链接:https://arxiv.org/abs/2509.00614

作者:u, Deyu Zou, Nima Shoghi, Victor Fung, Kai Liu, Pan Li


【15】Biological Pathway Informed Models with Graph Attention Networks (GATs)
标题:具有图形注意力网络(GAT)的生物路径知情模型
链接:https://arxiv.org/abs/2509.00524

作者:g, Ping Shu Ho, Ivan Au Yeung, Ka Chun Cheung, Simon See
备注:5 pages, 3 figures


【16】Graph Convolutional Network With Pattern-Spatial Interactive and Regional Awareness for Traffic Forecasting
标题:具有模式空间交互和区域感知的交通预测图卷积网络
链接:https://arxiv.org/abs/2509.00515

作者: Chengcheng Yan, Jibiao Yuan, Fiefie Zhao


【17】Unifying Adversarial Perturbation for Graph Neural Networks
标题:图神经网络的统一对抗扰动
链接:https://arxiv.org/abs/2509.00387

作者:ang, Ruihao Zhang, Zhengyu Chen, Fei Wu, Kun Kuang


【18】Design of Experiment for Discovering Directed Mixed Graph
标题:发现有向混合图的实验设计
链接:https://arxiv.org/abs/2509.01887

作者:, Chen Zhang


【19】Reinforcement learning for graph theory, Parallelizing Wagner's approach
标题:用于图形理论的强化学习,使瓦格纳的方法平行化
链接:https://arxiv.org/abs/2509.01607

作者:fard, Jane Breen


【20】Enabling Down Syndrome Research through a Knowledge Graph-Driven Analytical Framework
标题:通过知识图驱动的分析框架实现唐氏综合症研究
链接:https://arxiv.org/abs/2509.01565

作者:shnamurthy, Surya Saha, Pierrette Lo, Patricia L. Whetzel, Tursynay Issabekova, Jamed Ferreris Vargas, Jack DiGiovanna, Melissa A Haendel


【21】Hybrid Topic-Semantic Labeling and Graph Embeddings for Unsupervised Legal Document Clustering
标题:无监督法律文档集群的混合主题-语义标记和图嵌入
链接:https://arxiv.org/abs/2509.00990

作者:stola, Woohyeok Choi
备注:20 pages, 8 figures, 3 tables


【22】Deep Learning for Operational High-Resolution Nowcasting in Switzerland Using Graph Neural Networks
标题:使用图神经网络在瑞士进行深度学习用于运营高分辨率即时预报
链接:https://arxiv.org/abs/2509.00017

作者:iralles, Daniele Nerini, Jonas Bhend, Baudouin Raoult, Christoph Spirig


Transformer(15篇)

【1】Generative Sequential Notification Optimization via Multi-Objective Decision Transformers
标题:通过多目标决策转换器进行生成式顺序通知优化
链接:https://arxiv.org/abs/2509.02458

作者:jo, Ruofan Wang, Ke Liu, Rohit K. Patra, Haotian Shen, David Liu, Yiwen Yuan, Gokulraj Mohanasundaram, Fedor Borisyuk, Prakruthi Prabhakar


【2】Speech transformer models for extracting information from baby cries
标题:用于从婴儿哭声中提取信息的语音Transformer模型
链接:https://arxiv.org/abs/2509.02259

作者:onafos, Jéremy Rouch, Lény Lego, David Reby, Hugues Patural, Nicolas Mathevon, Rémy Emonet
备注:Accepted to WOCCI2025 (interspeech2025 workshop)


【3】From Attack Descriptions to Vulnerabilities: A Sentence Transformer-Based Approach
标题:从攻击描述到漏洞:基于句子转换器的方法
链接:https://arxiv.org/abs/2509.02077

作者:man, Diaeddin Rimawi, Bruno Rossi, Barbara Russo
备注:Accepted in The Journal of Systems and Software (2025)


【4】GradES: Significantly Faster Training in Transformers with Gradient-Based Early Stopping
标题:GradES:通过基于学生的早期停止,Transformer的训练速度明显加快
链接:https://arxiv.org/abs/2509.01842

作者: Xi Zeng, Zihan Zhou, Shuaijun Liu, Mehdi Hosseinzadeh, Reza Rawassizadeh
备注:16 pages, 3 figures


【5】A Multi-target Bayesian Transformer Framework for Predicting Cardiovascular Disease Biomarkers during Pandemics
标题:用于预测大流行期间心血管疾病生物标志物的多目标Bayesian Transformer框架
链接:https://arxiv.org/abs/2509.01794

作者:Inekwe, Emmanuel Agu, Winnie Mkandawire, Andres Colubri


【6】Learning to Ask: Decision Transformers for Adaptive Quantitative Group Testing
标题:学会提问:自适应量化群体测试的决策变革者
链接:https://arxiv.org/abs/2509.01723

作者:eymani, Tara Javidi


【7】Efficient Transformer-Inspired Variants of Physics-Informed Deep Operator Networks
标题:受物理知识启发的深度运营商网络的高效变形
链接:https://arxiv.org/abs/2509.01679

作者:Wei, Wenqian Chen, Panos Stinis
备注:Code will be released upon acceptance


【8】SCOUT: Toward Sub-Quadratic Attention via Segment Compression for Optimized Utility in Transformers
标题:SCOUT:通过分段压缩实现次二次注意力,以优化Transformer的效用
链接:https://arxiv.org/abs/2509.00935

作者:ri, Yuhe Fan, Benyamin Jamialahmadi, Parsa Farinneya, Boxing Chen, Marzieh S. Tahaei


【9】DTRNet: Dynamic Token Routing Network to Reduce Quadratic Costs in Transformers
标题:DTRNet:动态令牌路由网络,降低Transformer中的二次成本
链接:https://arxiv.org/abs/2509.00925

作者:ma, Saeed Najafi, Parsa Farinneya, Benyamin Jamialahmadi, Marzieh S. Tahaei, Yuhe Fan, Mehdi Rezagholizadeh, Boxing Chen, Aref Jafari


【10】Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
标题:利用时间融合变换器从稀疏的GNSS数据预测电离层
链接:https://arxiv.org/abs/2509.00631

作者:cciarini, Simone Mestici, Halil Kelebek, Linnea Wolniewicz, Michael Vergalla, Madhulika Guhathakurta, Umaa Rebbapragada, Bala Poduval, Atılım Güneş Baydin, Frank Soboczenski


【11】Memory Limitations of Prompt Tuning in Transformers
标题:Transformer中即时调谐的记忆限制
链接:https://arxiv.org/abs/2509.00421

作者:yer, Mario Michelessa, Caroline Chaux, Vincent Y. F. Tan


【12】Evaluating the Effectiveness of Transformer Layers in Wav2Vec 2.0, XLS-R, and Whisper for Speaker Identification Tasks
标题:评估Wav 2 Vec 2.0、XLS-R和Whisper中Transformer层对说话人识别任务的有效性
链接:https://arxiv.org/abs/2509.00230

作者:hlmann, Michael Alexander Saxer


【13】From TLinFormer to TConstFormer: The Leap to Constant-Time Transformer Attention: Achieving O(1) Computation and O(1) KV Cache during Autoregressive Inference
标题:从TLinFormer到TConstFormer:注意:在自回归推理中实现O(1)计算和O(1)KV缓存
链接:https://arxiv.org/abs/2509.00202

作者:Tang


【14】Scaling Legal AI: Benchmarking Mamba and Transformers for Statutory Classification and Case Law Retrieval
标题:扩展法律人工智能:对Mamba和Transformers进行统计分类和案例法检索的基准测试
链接:https://arxiv.org/abs/2509.00141

作者:urya


【15】Resting-state fMRI Analysis using Quantum Time-series Transformer
标题:使用量子时间序列Transformer的静息状态fMRI分析
链接:https://arxiv.org/abs/2509.00711

作者:Justin Park, Jungwoo Seo, Sangyoon Bae, Samuel Yen-Chi Chen, Huan-Hsin Tseng, Jiook Cha, Shinjae Yoo


GAN|对抗|攻击|生成相关(19篇)

【1】Unifi3D: A Study on 3D Representations for Generation and Reconstruction in a Common Framework
标题:Unifi 3D:在通用框架中生成和重建的3D表示研究
链接:https://arxiv.org/abs/2509.02474

作者:emann, Sainan Liu, Quentin Leboutet, Katelyn Gao, Benjamin Ummenhofer, Michael Paulitsch, Kai Yuan


【2】Conditional-$t^3$VAE: Equitable Latent Space Allocation for Fair Generation
标题:有条件的-$t$VAE:公平发电的公平潜在空间分配
链接:https://arxiv.org/abs/2509.02154

作者:hammed Bouayed, Samuel Deslauriers-Gauthier, Adrian Iaccovelli, David Naccache


【3】Abex-rat: Synergizing Abstractive Augmentation and Adversarial Training for Classification of Occupational Accident Reports
标题:Abex-rat:协同抽象增强和对抗性训练用于职业事故报告分类
链接:https://arxiv.org/abs/2509.02072

作者:, Jinbao Tian, Yunqi Xu, Zhou Li


【4】Knowledge distillation as a pathway toward next-generation intelligent ecohydrological modeling systems
标题:知识提炼作为下一代智能生态水文建模系统的途径
链接:https://arxiv.org/abs/2509.01972

作者:g, Yang Yang, Ting Fong May Chui, Morgan Thornwell, Hoshin Vijai Gupta
备注:25 pages, 6 figures


【5】Prediction, Generation of WWTPs microbiome community structures and Clustering of WWTPs various feature attributes using DE-BP model, SiTime-GAN model and DPNG-EPMC ensemble clustering algorithm with modulation of microbial ecosystem health
标题:预测、WWTP微生物组群落结构的生成以及使用DE-BP模型、SiTime-GAN模型和DPNG-EPMC集成集群算法对WWTP各种特征属性进行集群,并调节微生物生态系统健康
链接:https://arxiv.org/abs/2509.01526

作者:ai, Weiwei Cai, Xiang Feng, Huiqun Yu, Weibin Guo, Miao Guo
备注:48 pages,25 figures, three major research sections: Prediction, Generation and Clustering


【6】Geometric origin of adversarial vulnerability in deep learning
标题:深度学习中对抗脆弱性的几何起源
链接:https://arxiv.org/abs/2509.01235

作者:en, Wenkang Du, Jianhui Zhou, Haiping Huang


【7】RAMS: Residual-based adversarial-gradient moving sample method for scientific machine learning in solving partial differential equations
标题:RAMS:基于剩余的对抗梯度移动样本方法,用于求解偏微方程的科学机器学习
链接:https://arxiv.org/abs/2509.01234

作者:uyang, Min Zhu, Wei Xiong, Si-Wei Liu, Lu Lu


【8】Sequential Difference Maximization: Generating Adversarial Examples via Multi-Stage Optimization
标题:序列差异最大化:通过多阶段优化生成对抗性示例
链接:https://arxiv.org/abs/2509.00826

作者:u, Tao Hu, Peng Yi, Weitao Han, Jichao Xie, Baolin Li
备注:5 pages, 2 figures, 5 tables, CIKM 2025


【9】ProCause: Generating Counterfactual Outcomes to Evaluate Prescriptive Process Monitoring Methods
标题:ProCause:生成反事实结果以评估规定过程监控方法
链接:https://arxiv.org/abs/2509.00797

作者:Moor, Hans Weytjens, Johannes De Smedt


【10】The Name-Free Gap: Policy-Aware Stylistic Control in Music Generation
标题:无名差距:音乐世代中的政策意识风格控制
链接:https://arxiv.org/abs/2509.00654

作者:garajan, Hao-Wen Dong
备注:10 pages, 2 figures


【11】Learning from Peers: Collaborative Ensemble Adversarial Training
标题:向同行学习:协作整体对抗训练
链接:https://arxiv.org/abs/2509.00089

作者:n, Guo Yanming, Xie Yuxiang, Li Zheng, Chen Jiangming, Li Xiaolong, Lao Mingrui


【12】Entropy-Guided Loop: Achieving Reasoning through Uncertainty-Aware Generation
标题:熵引导循环:通过不确定性感知生成实现推理
链接:https://arxiv.org/abs/2509.00079

作者: A. Correa, Ana C. H de Matos
备注:9 pages, 2 figures, 4 tables


【13】SynCircuit: Automated Generation of New Synthetic RTL Circuits Can Enable Big Data in Circuits
标题:SynCircuit:自动生成新的合成RTL电路可以在电路中实现大数据
链接:https://arxiv.org/abs/2509.00071

作者:, Jing Wang, Wenji Fang, Zhiyao Xie
备注:Accepted by DAC'25


【14】Scaffold Diffusion: Sparse Multi-Category Voxel Structure Generation with Discrete Diffusion
标题:支架扩散:利用离散扩散生成稀疏多类别体素结构
链接:https://arxiv.org/abs/2509.00062

作者:ng


【15】Mitigating Data Exfiltration Attacks through Layer-Wise Learning Rate Decay Fine-Tuning
标题:通过分层学习率衰减微调缓解数据泄露攻击
链接:https://arxiv.org/abs/2509.00027

作者:lier (EPIONE), Huiyu Li (EPIONE), Nicholas Ayache (EPIONE), Hervé Delingette (EPIONE)
备注:None


【16】Amputation-imputation based generation of synthetic tabular data for ratemaking
标题:基于截肢-插补的合成表格数据生成用于费率制定
链接:https://arxiv.org/abs/2509.02171

作者:vrylenko, Meelis Käärik, Artur Tuttar
备注:31 pages, 2 figures, 2 tables


【17】Non-Identical Diffusion Models in MIMO-OFDM Channel Generation
标题:MMO-CDMA通道生成中的非相同扩散模型
链接:https://arxiv.org/abs/2509.01641

作者:g, Omar Alhussein, Mérouane Debbah


【18】Semi-Supervised Bayesian GANs with Log-Signatures for Uncertainty-Aware Credit Card Fraud Detection
标题:具有日志签名的半监督Bayesian GAN用于不确定性信用卡欺诈检测
链接:https://arxiv.org/abs/2509.00931

作者:nschall


【19】Conditional Generative Adversarial Networks Based Inertial Signal Translation
标题:基于条件生成对抗网络的惯性信号翻译
链接:https://arxiv.org/abs/2509.00016

作者:lakowski
备注:Originally presented at: 2025 Signal Processing Symposium (SPSympo) Warsaw, Poland; Associated data available at: M. Kolakowski, "Wrist and Tibia/Shoe Mounted IMU Measurement Results for Gait Analysis." Zenodo, Dec. 27, 2023. doi: this https URL


半/弱/无/有监督|不确定性|主动学习(15篇)

【1】Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
标题:通过RLVR监督学习框架的隐性演员批评者耦合
链接:https://arxiv.org/abs/2509.02522

作者:i, Longze Chen, Ze Gong, Yukun Chen, Lu Wang, Wanwei He, Run Luo, Min Yang


【2】EmoPerso: Enhancing Personality Detection with Self-Supervised Emotion-Aware Modelling
标题:Perso:通过自我监督的描述感知建模增强人格检测
链接:https://arxiv.org/abs/2509.02450

作者:hen, Xiaohao Cai, Yunfei Long, Imran Razzak, Guanming Chen, Shoaib Jameel


【3】Online Identification of IT Systems through Active Causal Learning
标题:通过主动因果学习在线识别IT系统
链接:https://arxiv.org/abs/2509.02130

作者:r, Rolf Stadler


【4】Learning Longitudinal Stress Dynamics from Irregular Self-Reports via Time Embeddings
标题:通过时间嵌入从不规则的自我报告中学习纵向压力动态
链接:https://arxiv.org/abs/2509.01569

作者:on, Mohamed Chetouani


【5】Unified Supervision For Vision-Language Modeling in 3D Computed Tomography
标题:3D计算机断层扫描中视觉语言建模的统一监督
链接:https://arxiv.org/abs/2509.01554

作者:Lee, Zelong Liu, Hamza Ahmed, Spencer Kim, Sean Huver, Vishwesh Nath, Zahi A. Fayad, Timothy Deyer, Xueyan Mei
备注:ICCV 2025 VLM 3d Workshop


【6】Unsupervised Identification and Replay-based Detection (UIRD) for New Category Anomaly Detection in ECG Signal
标题:心电信号新类别异常检测的无监督识别和回放检测(UIRD)
链接:https://arxiv.org/abs/2509.01512

作者:Shi, Zekai Wang, Yuxuan Li


【7】M3Ret: Unleashing Zero-shot Multimodal Medical Image Retrieval via Self-Supervision
标题:M3 Ret:通过自我监督释放Zero-Shot多模式医学图像检索
链接:https://arxiv.org/abs/2509.01360

作者:Zheng Jiang, Chengyu Fang, Heng Guo, Yan-Jie Zhou, Jiaqi Qu, Le Lu, Minfeng Xu
备注:Technical Report


【8】Towards Trustworthy Vital Sign Forecasting: Leveraging Uncertainty for Prediction Intervals
标题:迈向值得信赖的重要迹象预测:利用不确定性来预测间隔
链接:https://arxiv.org/abs/2509.01319

作者:ang, Thomas C. Henderson, Yew Soon Ong, Yih Yng Ng, Xiuyi Fan
备注:Accepted at the 25th IEEE International Conference on Data Mining (ICDM)


【9】Ultra Strong Machine Learning: Teaching Humans Active Learning Strategies via Automated AI Explanations
标题:超强机器学习:通过自动化人工智能简化教授人类主动学习策略
链接:https://arxiv.org/abs/2509.00961

作者:ohannes Langer, Ute Schmid, Stephen Muggleton


【10】Predicting Multi-Type Talented Students in Secondary School Using Semi-Supervised Machine Learning
标题:利用半监督机器学习预测中学多类型优秀学生
链接:https://arxiv.org/abs/2509.00863

作者:eng, Zhen-Qun Yang, Jiannong Cao, Jiabei Cheng


【11】Why Pool When You Can Flow? Active Learning with GFlowNets
标题:当你可以流动时为什么要进行池?使用GFlowNets进行主动学习
链接:https://arxiv.org/abs/2509.00704

作者:ang, Mohit Pandey, Artem Cherkasov, Martin Ester
备注:6 pages; 5 figures


【12】FedThief: Harming Others to Benefit Oneself in Self-Centered Federated Learning
标题:FedThief:在以自我为中心的联邦学习中伤害他人以造福自己
链接:https://arxiv.org/abs/2509.00540

作者:hang, Mang Ye
备注:12 pages, 5 figures


【13】Variational Uncertainty Decomposition for In-Context Learning
标题:上下文内学习的变分不确定性分解
链接:https://arxiv.org/abs/2509.02327

作者:dra Jayasekera, Jacob Si, Wenlong Chen, Filippo Valdettaro, A. Aldo Faisal, Yingzhen Li


【14】Wrong Model, Right Uncertainty: Spatial Associations for Discrete Data with Misspecification
标题:错误的模型,正确的不确定性:具有错误规范的离散数据的空间关联
链接:https://arxiv.org/abs/2509.01776

作者:Burt, Renato Berlinghieri, Tamara Broderick
备注:24 pages, 2 figures


【15】Self-Organising Memristive Networks as Physical Learning Systems
标题:自组织记忆网络作为物理学习系统
链接:https://arxiv.org/abs/2509.00747

作者: Caravelli, Gianluca Milano, Adam Z. Stieg, Carlo Ricciardi, Simon Anthony Brown, Zdenka Kuncic
备注:Perspective paper on SOMN; 20 pages double columns, 5 figures, 2 boxes;


迁移|Zero/Few/One-Shot|自适应(14篇)

【1】Federated learning over physical channels: adaptive algorithms with near-optimal guarantees
标题:物理通道上的联合学习:具有接近最优保证的自适应算法
链接:https://arxiv.org/abs/2509.02538

作者:, Wenlong Mou


【2】Ordinal Adaptive Correction: A Data-Centric Approach to Ordinal Image Classification with Noisy Labels
标题:有序自适应纠正:一种以数据为中心的具有噪音标签的有序图像分类方法
链接:https://arxiv.org/abs/2509.02351

作者:edighi Moghaddam, Mohammad Reza Mohammadi
备注:10 pages, 5 figures, 5 tables


【3】AdaSwitch: An Adaptive Switching Meta-Algorithm for Learning-Augmented Bounded-Influence Problems
标题:AdaSwitch:一种用于学习增强有界影响问题的自适应交换元算法
链接:https://arxiv.org/abs/2509.02302

作者:Yuze Chen, Yuan Zhou
备注:62 pages, 7 figures


【4】VISP: Volatility Informed Stochastic Projection for Adaptive Regularization
标题:VISP:适应性正规化的波动性知情随机预测
链接:https://arxiv.org/abs/2509.01903

作者:lam


【5】One-Shot Clustering for Federated Learning Under Clustering-Agnostic Assumption
标题:预测不可知假设下的联邦学习一次集群
链接:https://arxiv.org/abs/2509.01587

作者:zysztof Zuziak, Roberto Pellungrini, Salvatore Rinzivillo


【6】ADMP-GNN: Adaptive Depth Message Passing GNN
标题:ADMP-GNN:自适应深度消息传递GNN
链接:https://arxiv.org/abs/2509.01170

作者:bbahaddou, Fragkiskos D. Malliaros, Johannes F. Lutzeyer, Michalis Vazirgiannis
备注:None


【7】MATL-DC: A Multi-domain Aggregation Transfer Learning Framework for EEG Emotion Recognition with Domain-Class Prototype under Unseen Targets
标题:MATL-DC:一个用于脑电情感识别的多域聚集转移学习框架,具有不可见目标下的领域类原型
链接 :https://arxiv.org/abs/2509.01135

作者:i, Canbiao Wu, Zhehao Zhou, Na Tian, Zhen Liang


【8】A Hybrid Ai Framework For Strategic Patent Portfolio Pruning: Integrating Learning To-Rank And Market Need Analysis For Technology Transfer Optimization
标题:战略性专利组合修剪的混合AI框架:整合按等级学习和市场需求分析以优化技术转移
链接:https://arxiv.org/abs/2509.00958

作者:rma, Vivek Sharma, Vishal Singh
备注:Page 2, Figure 1 shows the conceptual architecture, and Page 11, Figure 2 outlines its end to end workflow for strategic patent portfolio pruning


【9】ART: Adaptive Resampling-based Training for Imbalanced Classification
标题:ART:基于自适应重新采样的不平衡分类训练
链接:https://arxiv.org/abs/2509.00955

作者:andrai, Shourya Jain, K. Ilanthenral
备注:Submitted to SIGKDD'26


【10】Robust Spatiotemporal Forecasting Using Adaptive Deep-Unfolded Variational Mode Decomposition
标题:使用自适应深度展开变分模式分解的鲁棒时空预测
链接:https://arxiv.org/abs/2509.00703

作者:ad, Lukas Wesemann, Fabian Waschkowski, Zubair Khalid
备注:Under review in IEEE Signal Processing Letter


【11】Algorithm Adaptation Bias in Recommendation System Online Experiments
标题:推荐系统在线实验中的算法自适应偏差
链接:https://arxiv.org/abs/2509.00199

作者:g, Zhenyu Zhao


【12】Adaptive Physics-Informed Neural Networks with Multi-Category Feature Engineering for Hydrogen Sorption Prediction in Clays, Shales, and Coals
标题:具有多类别特征工程的自适应物理信息神经网络用于预测粘土、页岩和煤中的氢吸收
链接:https://arxiv.org/abs/2509.00049

作者:Nooraiepour, Mohammad Masoudi, Zezhang Song, Helge Hellevang


【13】A-FloPS: Accelerating Diffusion Sampling with Adaptive Flow Path Sampler
标题:A-FloPS:使用自适应流路采样器加速扩散采样
链接:https://arxiv.org/abs/2509.00036

作者:, Zhenyu Xiao, Yuantao Gu
备注:14 pages,9 figures


【14】Transfer Learning for Minimum Operating Voltage Prediction in Advanced Technology Nodes: Leveraging Legacy Data and Silicon Odometer Sensing
标题:先进技术节点中最小工作电压预测的转移学习:利用传统数据和硅里程表传感
链接:https://arxiv.org/abs/2509.00035

作者:n, Rebecca Chen, Boxun Xu, Chen He, Peng Li


强化学习(13篇)

【1】SimpleTIR: End-to-End Reinforcement Learning for Multi-Turn Tool-Integrated Reasoning
标题:SimpleTLR:用于多圈工具集成推理的端到端强化学习
链接:https://arxiv.org/abs/2509.02479

作者:Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, Bo An


【2】Deep Reinforcement Learning for Real-Time Drone Routing in Post-Disaster Road Assessment Without Domain Knowledge
标题:没有领域知识的灾后道路评估中实时无人机路由的深度强化学习
链接:https://arxiv.org/abs/2509.01886

作者:ong, Jiuh-Biing Sheu, Zheng Wang, Xiaoguang Yang, Ran Yan
备注:36 pages, 15 figures


【3】Semi-on-Demand Transit Feeders with Shared Autonomous Vehicles and Reinforcement-Learning-Based Zonal Dispatching Control
标题:具有共享自动驾驶车辆和基于增强学习的区域调度控制的半按需交通供电器
链接:https://arxiv.org/abs/2509.01883

作者:Ng, Roman Engelhardt, Florian Dandl, Hani S. Mahmassani, Klaus Bogenberger
备注:6 pages, 9 figures, published in 2024 IEEE 27th International   Conference on Intelligent Transportation Systems (ITSC), Edmonton, Canada,   24-27 September 2024


【4】Goal-Conditioned Reinforcement Learning for Data-Driven Maritime Navigation
标题:数据驱动海上导航的目标条件强化学习
链接:https://arxiv.org/abs/2509.01838

作者:Vaidheeswaran, Dilith Jayakody, Samruddhi Mulay, Anand Lo, Md Mahbub Alam, Gabriel Spadon


【5】Succeed or Learn Slowly: Sample Efficient Off-Policy Reinforcement Learning for Mobile App Control
标题:成功还是慢慢学习:针对移动应用程序控制的高效非政策强化学习示例
链接:https://arxiv.org/abs/2509.01720

作者:Papoudakis, Thomas Coste, Jianye Hao, Jun Wang, Kun Shao


【6】Reinforcement Learning for Machine Learning Engineering Agents
标题:机器学习工程代理的强化学习
链接:https://arxiv.org/abs/2509.01684

作者:ng, Joy He-Yueya, Percy Liang


【7】The Geometry of Nonlinear Reinforcement Learning
标题:非线性强化学习的几何学
链接:https://arxiv.org/abs/2509.01432

作者:losevic, Nico Scherf


【8】Towards High Data Efficiency in Reinforcement Learning with Verifiable Reward
标题:具有可验证奖励的强化学习中的高数据效率
链接:https://arxiv.org/abs/2509.01321

作者:g, Zhenduo Zhang, Yurou Liu, Wayne Xin Zhao, Zujie Wen, Zhiqiang Zhang, Jun Zhou


【9】Building surrogate models using trajectories of agents trained by Reinforcement Learning
标题:使用强化学习训练的代理人轨迹构建代理模型
链接:https://arxiv.org/abs/2509.01285

作者:tero, Marco Quartulli, Marcello Restelli
备注:Published in ICANN 2024 conference


【10】Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks
标题:无线边缘网络中用于任务卸载的多代理强化学习
链接:https://arxiv.org/abs/2509.01257

作者:x, Francesco De Pellegrini, Eitan Altman
备注:Submitted at AI4NextG @ NeurIPS'25 Workshop


【11】Reinforcement Learning Driven Generalizable Feature Representation for Cross-User Activity Recognition
标题:用于跨用户活动识别的强化学习驱动的可推广特征表示
链接:https://arxiv.org/abs/2509.01031

作者:Ye, Kevin I-Kai Wang


【12】Reinforcement Learning of Dolly-In Filming Using a Ground-Based Robot
标题:使用地面机器人进行娃娃拍摄的强化学习
链接:https://arxiv.org/abs/2509.00564

作者:rimer, Jack Saunders, Alan Hunter, Wenbin Li
备注:Authors' accepted manuscript (IROS 2024, Abu Dhabi, Oct 14-18, 2024).   Please cite the version of record: DOI 10.1109/IROS58592.2024.10802717. 8   pages


【13】Financial Decision Making using Reinforcement Learning with Dirichlet Priors and Quantum-Inspired Genetic Optimization
标题:使用具有Dirichlet先验的强化学习和量子启发的遗传优化进行财务决策
链接:https://arxiv.org/abs/2509.00095

作者:ndy, Debjit Dhar, Rik Das


元学习(2篇)

【1】Learnable Loss Geometries with Mirror Descent for Scalable and Convergent Meta-Learning
标题:基于镜像下降的可学习损失几何,用于可扩展和收敛的元学习
链接:https://arxiv.org/abs/2509.02418

作者:ang, Bingcong Li, Georgios B. Giannakis


【2】Learning to Coordinate: Distributed Meta-Trajectory Optimization Via Differentiable ADMM-DDP
标题:学习协调:通过可区分ADMM-DDD进行分布式元轨迹优化
链接:https://arxiv.org/abs/2509.01630

作者:Wang, Yichao Gao, Tianchen Sun, Lin Zhao


符号|符号学习(1篇)

【1】Neuro-Symbolic Predictive Process Monitoring
标题:神经符号预测过程监控
链接:https://arxiv.org/abs/2509.00834

作者:ni, Elena Umili, Ivan Donadello, Fabrizio Maria Maggi, Matteo Mancanelli, Fabio Patrizi


医学相关(10篇)

【1】Anisotropic Fourier Features for Positional Encoding in Medical Imaging
标题:医学成像位置编码的各向异性傅里叶特征
链接:https://arxiv.org/abs/2509.02488

作者:areen, Dongsheng Yuan, Dingming Liu, Foo-Wei Ten, Sören Lukassen
备注:13 pages, 3 figures, 2 tables, to be published in ShapeMI MICCAI 2025


【2】Baichuan-M2: Scaling Medical Capability with Large Verifier System
标题:Baichuan-M2:利用大型验证系统提升医疗能力
链接:https://arxiv.org/abs/2509.02208

作者:M2 Team: Chengfeng Dou, Chong Liu, Fan Yang, Fei Li, Jiyuan Jia, Mingyang Chen, Qiang Ju, Shuai Wang, Shunya Dang, Tianpeng Li, Xiangrong Zeng, Yijie Zhou, Chenzheng Zhu, Da Pan, Fei Deng, Guangwei Ai, Guosheng Dong, Hongda Zhang, Jinyang Tai, Jixiang Hong, Kai Lu, Linzhuang Sun, Peidong Guo, Qian Ma, Rihui Xin, Shihui Yang, Shusen Zhang, Yichuan Mo, Zheng Liang, Zhishou Zhang, Hengfu Cui, Zuyi Zhu, Xiaochuan Wang
备注:Baichuan-M2 Technical Report


【3】Content and Engagement Trends in COVID-19 YouTube Videos: Evidence from the Late Pandemic
标题:COVID-19 YouTube视频的内容和参与趋势:来自晚期大流行的证据
链接:https://arxiv.org/abs/2509.01954

作者:Thakur, Madeline D Hartel, Lane Michael Boden, Dallas Enriquez, Boston Joyner Ricks


【4】A Multimodal Deep Learning Framework for Early Diagnosis of Liver Cancer via Optimized BiLSTM-AM-VMD Architecture
标题:通过优化的BiLSTM-AM-VMD架构用于肝癌早期诊断的多模式深度学习框架
链接:https://arxiv.org/abs/2509.01164

作者:ng, Zeping Chen, Xavier Wang


【5】Multi-Modal Machine Learning Framework for Predicting Early Recurrence of Brain Tumors Using MRI and Clinical Biomarkers
标题:使用MRI和临床生物标志物预测脑肿瘤早期复发的多模式机器学习框架
链接:https://arxiv.org/abs/2509.01161

作者:ng, Zeping Chen, Rui Xie, Peiyao Zheng, Xavier Wang


【6】Enhancing Fairness in Skin Lesion Classification for Medical Diagnosis Using Prune Learning
标题:利用Prune学习提高医学诊断皮肤病变分类的公平性
链接:https://arxiv.org/abs/2509.00745

作者:xton, Koorosh Aslansefat, Dhavalkumar Thakker, Yiannis Papadopoulos, Tanaya Maslekar


【7】Valid Property-Enhanced Contrastive Learning for Targeted Optimization & Resampling for Novel Drug Design
标题:有效的属性增强对比学习用于新型药物设计的有针对性优化和重新排序
链接:https://arxiv.org/abs/2509.00684

作者:anerjee, Somnath Kar, Anirban Pal, Debabrata Maiti
备注:Code: this https URL


【8】Automatic Screening of Parkinson's Disease from Visual Explorations
标题:通过视觉探索自动筛查帕金森病
链接:https://arxiv.org/abs/2509.01326

作者:Alcala-Durand, J. Camilo Puerta-Acevedo, Julián D. Arias-Londoño, Juan I. Godino-Llorente
备注:22 pages, 11 figures


【9】Towards Early Detection: AI-Based Five-Year Forecasting of Breast Cancer Risk Using Digital Breast Tomosynthesis Imaging
标题:迈向早期检测:使用数字乳腺断层合成成像基于人工智能的乳腺癌风险五年预测
链接:https://arxiv.org/abs/2509.00900

作者:Dorster, Felix J. Dorfner, Mason C. Cleveland, Melisa S. Guelen, Jay Patel, Dania Daye, Jean-Philippe Thiran, Albert E. Kim, Christopher P. Bridge
备注:Deep Breath Workshop, MICCAI 2025


【10】Can General-Purpose Omnimodels Compete with Specialists? A Case Study in Medical Image Segmentation
标题:通用全功能模型可以与专家竞争吗?医学图像分割案例研究
链接:https://arxiv.org/abs/2509.00866

作者:ng, Qiang Chen, Tao Zhou
备注:15 pages, 7 figures


蒸馏|知识提取(2篇)

【1】Distillation of a tractable model from the VQ-VAE
标题:从VQ-VAE中提炼出易于处理的模型
链接:https://arxiv.org/abs/2509.01400

作者:žić, Milan Papez, Tomáš Pevný


【2】An Efficient GNNs-to-KANs Distillation via Self-Attention Dynamic Sampling with Potential for Consumer Electronics Edge Deployment
标题:通过自我注意力动态采样进行高效的GNNS到KAN蒸馏,具有消费电子边缘部署的潜力
链接:https://arxiv.org/abs/2509.00560

作者:Zilong Fu, Penghe Huang, Yuanyuan Li, Wu Deng, Dongyan Li


推荐(5篇)

【1】AgroSense: An Integrated Deep Learning System for Crop Recommendation via Soil Image Analysis and Nutrient Profiling
标题:AgroSense:一个通过土壤图像分析和养分分析推荐作物的集成深度学习系统
链接:https://arxiv.org/abs/2509.01344

作者:ndey, Ranjita Das, Debasmita Biswas
备注:Preprint, 23 pages, 6 images, 1 table


【2】XAI-Driven Machine Learning System for Driving Style Recognition and Personalized Recommendations
标题:XAI驱动的机器学习系统,用于驾驶风格识别和个性化推荐
链接:https://arxiv.org/abs/2509.00802

作者:el Sellal, Ahmed Ayoub Bellachia, Meryem Malak Dif, Enguerrand De Rautlin De La Roy, Mouhamed Amine Bouchiha, Yacine Ghamri-Doudane


【3】Game Theoretic Resilience Recommendation Framework for CyberPhysical Microgrids Using Hypergraph MetaLearning
标题:使用Hypergraph元学习的网络物理微网格博弈论弹性推荐框架
链接:https://arxiv.org/abs/2509.00528

作者: Niketh, Prasanta K Panigrahi, V Vignesh, Mayukha Pal


【4】Counterfactual Risk Minimization with IPS-Weighted BPR and Self-Normalized Evaluation in Recommender Systems
标题:推荐系统中采用IPS加权BPR和自规范化评估实现反事实风险最小化
链接:https://arxiv.org/abs/2509.00333

作者:a, Arpita Vats
备注:Accepted at Causality, Counterfactuals & Sequential Decision-Making Workshop(CONSEQUENCES) at ACM Recommender Systems Conference(RecSys 25) Prague, Czech Republic


【5】Bias Mitigation for AI-Feedback Loops in Recommender Systems: A Systematic Literature Review and Taxonomy
标题:推荐系统中人工智能反馈环的偏见缓解:系统性文献回顾和分类
链接:https://arxiv.org/abs/2509.00109

作者:toecker, Samed Bayer, Ingo Weber
备注:11 pages, 6 figures, 2 tables. Accepted at the FAccTRec '25 Workshop, ACM RecSys 2025 (Prague)


聚类(3篇)

【1】Advanced spectral clustering for heterogeneous data in credit risk monitoring systems
标题:信用风险监控系统中异构数据的高级谱聚类
链接:https://arxiv.org/abs/2509.00546

作者:engyan Li, Jiping Qiang, Zhi Su
备注:25 pages, 7 figures, 6 tables


【2】Protocol for Clustering 4DSTEM Data for Phase Differentiation in Glasses
标题:用于聚集4DSTEM数据以实现眼镜中的相区分的协议
链接:https://arxiv.org/abs/2509.00943

作者:mar, Yevgeny Rakita


【3】Assessing One-Dimensional Cluster Stability by Extreme-Point Trimming
标题:通过极点修剪评估一维团簇稳定性
链接:https://arxiv.org/abs/2509.00258

作者:eure, Emmanuel Akame Mfoumou, David Holcman
备注:33 pages


自动驾驶|车辆|车道检测等(3篇)

【1】Learning Social Heuristics for Human-Aware Path Planning
标题:学习社会启发法进行人性意识路径规划
链接:https://arxiv.org/abs/2509.02134

作者:rale, Matteo Leonetti, Marcello Chiaberge


【2】Predicting NCAP Safety Ratings: An Analysis of Vehicle Characteristics and ADAS Features Using Machine Learning
标题:预测NCAP安全评级:使用机器学习分析车辆特征和ADAS特征
链接:https://arxiv.org/abs/2509.01897

作者:nwar, Aera Kim LeBoulluec (University of Texas at Arlington)
备注:11 pages, 4 figures, Under review


【3】Robust Anomaly Detection through Multi-Modal Autoencoder Fusion for Small Vehicle Damage Detection
标题:通过多模式自动编码器融合进行稳健异常检测小型车辆损坏检测
链接:https://arxiv.org/abs/2509.01719

作者:, Mehmed Yüksel, Frank Kirchner
备注:14 pages, 12 figures, submitted to Elsevier MLWA


联邦学习|隐私保护|加密(5篇)

【1】Gaming and Cooperation in Federated Learning: What Can Happen and How to Monitor It
标题:联邦学习中的游戏与合作:会发生什么以及如何监控
链接:https://arxiv.org/abs/2509.02391

作者:Kim, Wonjun Jeong, Gisung Oh
备注:51 pages, 7 figures


【2】Online Decentralized Federated Multi-task Learning With Trustworthiness in Cyber-Physical Systems
标题:网络物理系统中具有可信度的在线去中心化联邦多任务学习
链接:https://arxiv.org/abs/2509.00992

作者:deyomi, Sofiat Olaosebikan, Ajibuwa Opeyemi, Oluwadoyinsola Ige


【3】Fairness in Federated Learning: Trends, Challenges, and Opportunities
标题:联合学习的公平性:趋势、挑战和机遇
链接:https://arxiv.org/abs/2509.00799

作者:ukhtiar, Adnan Mahmood, Quan Z. Sheng
备注:Accepted and Published


【4】Curriculum Guided Personalized Subgraph Federated Learning
标题:课程引导的个性化子图联邦学习
链接:https://arxiv.org/abs/2509.00402

作者:g, Hogun Park
备注:Accepted to the CIKM 2025. This is an extended version of the original submission


【5】Centralized vs. Federated Learning for Educational Data Mining: A Comparative Study on Student Performance Prediction with SAEB Microdata
标题:教育数据挖掘的集中式学习与联邦学习:SAEB微数据对学生表现预测的比较研究
链接 :https://arxiv.org/abs/2509.00086

作者:ertulino
备注:This paper has been prepared to be submitted Brazilian Journal of Informatics in Education - RBIE


推理|分析|理解|解释(26篇)

【1】Understanding sparse autoencoder scaling in the presence of feature manifolds
标题:了解存在特征集的情况下的稀疏自动编码器缩放
链接:https://arxiv.org/abs/2509.02565

作者:ichaud, Liv Gorton, Tom McGrath
备注:13 pages, 8 figures, short workshop submission


【2】GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning
标题:GRAM-R$^2$:用于奖励推理的自我训练生成基础奖励模型
链接:https://arxiv.org/abs/2509.02492

作者: Wang, Yongyu Mu, Hang Zhou, Yifu Huo, Ziming Zhu, Jiali Zeng, Murun Yang, Bei Li, Tong Xiao, Xiaoyang Hao, Chunliang Zhang, Fandong Meng, Jingbo Zhu


【3】Understanding Space Is Rocket Science - Only Top Reasoning Models Can Solve Spatial Understanding Tasks
标题:理解空间是火箭科学-只有顶级推理模型才能解决空间理解任务
链接:https://arxiv.org/abs/2509.02175

作者:ing, Mayug Maniparambil, Ellen Rushe, Noel E. O'Connor, Anthony Ventresque


【4】SegFormer Fine-Tuning with Dropout: Advancing Hair Artifact Removal in Skin Lesion Analysis
标题:SegFormer微调并退出:在皮肤病变分析中推进头发毛刺去除
链接:https://arxiv.org/abs/2509.02156

作者:mmed Saad, Umme Niraj Mahi


【5】Structure-aware Contrastive Learning for Diagram Understanding of Multimodal Models
标题:用于多峰模型图表理解的结构感知对比学习
链接:https://arxiv.org/abs/2509.01959

作者:asaki
备注:10 pages, 8 figures


【6】Throttling Web Agents Using Reasoning Gates
标题:使用推理门限制Web代理
链接:https://arxiv.org/abs/2509.01619

作者:umar, Jaechul Roh, Ali Naseh, Amir Houmansadr, Eugene Bagdasarian


【7】Feynman-Kac-Flow: Inference Steering of Conditional Flow Matching to an Energy-Tilted Posterior
标题:Feynman-Kac-Flow:条件流匹配到能量倾斜后验的推理引导
链接:https://arxiv.org/abs/2509.01543

作者:n Mark, Leonard Galustian, Maximilian P.-P. Kovar, Esther Heid


【8】Evaluating the stability of model explanations in instance-dependent cost-sensitive credit scoring
标题:评估实例相关成本敏感信用评分中模型解释的稳定性
链接:https://arxiv.org/abs/2509.01409

作者:llegeer, Matthias Bogaert, Dries F. Benoit
备注:None


【9】Practical and Private Hybrid ML Inference with Fully Homomorphic Encryption
标题:具有全同形加密的实用和私有混合ML推理
链接:https://arxiv.org/abs/2509.01253

作者:was, Philippe Chartier, Akash Dhasade, Tom Jurien, David Kerriou, Anne-Marie Kerrmarec, Mohammed Lemou, Franklin Tranie, Martijn de Vos, Milos Vujasinovic


【10】An Explainable Gaussian Process Auto-encoder for Tabular Data
标题:表格数据的可解释高斯过程自动编码器
链接:https://arxiv.org/abs/2509.00884

作者:, Brian Barr, John Paisley


【11】Tabular Diffusion Counterfactual Explanations
标题:表格扩散反事实解释
链接:https://arxiv.org/abs/2509.00876

作者:, Brian Barr, John Paisley


【12】Exam Readiness Index (ERI): A Theoretical Framework for a Composite, Explainable Index
标题:考试准备指数(ERI):一个综合的,可解释的指数的理论框架
链接:https://arxiv.org/abs/2509.00718

作者:akash Verma


【13】Disentangling Slow and Fast Temporal Dynamics in Degradation Inference with Hierarchical Differential Models
标题:用分层差异模型解开退化推理中的慢时间动态和快时间动态
链接:https://arxiv.org/abs/2509.00639

作者:hao, Olga Fink


【14】Federated Survival Analysis with Node-Level Differential Privacy: Private Kaplan-Meier Curves
标题:采用节点级差异隐私的联合生存分析:私人Kaplan-Meier曲线
链接:https://arxiv.org/abs/2509.00615

作者: Raghavan Veeraragavan, Jan Franz Nygård
备注:This is the author's accepted version of the paper in IEEE FLTA 2025. The final version of record will appear in Proceedings of the IEEE International Conference on Federated Learning Technologies and Applications (FLTA 2025)


【15】Integrated Multivariate Segmentation Tree for the Analysis of Heterogeneous Credit Data in Small and Medium-Sized Enterprises
标题:集成多元细分树用于中小企业异类信用数据分析
链接:https://arxiv.org/abs/2509.00550

作者:iuying Wang
备注:26 pages,11 figures, 5 tables


【16】CVPD at QIAS 2025 Shared Task: An Efficient Encoder-Based Approach for Islamic Inheritance Reasoning
标题:CVPD出席QIAS 2025共享任务:一种基于编码器的有效伊斯兰继承推理方法
链接:https://arxiv.org/abs/2509.00457

作者:ine Bekhouche, Abdellah Zakaria Sellam, Hichem Telli, Cosimo Distante, Abdenour Hadid


【17】SurgLLM: A Versatile Large Multimodal Model with Spatial Focus and Temporal Awareness for Surgical Video Understanding
标题:SurgLLM:具有空间焦点和时间感知的多功能大型多模式模型,用于理解手术视频
链接:https://arxiv.org/abs/2509.00357

作者:, Xingjian Luo, Kun Yuan, Jinlin Wu, Danny T.M. Chan, Nassir Navab, Hongbin Liu, Zhen Lei, Jiebo Luo


【18】Illuminating Patterns of Divergence: DataDios SmartDiff for Large-Scale Data Difference Analysis
标题:启发分歧模式:DataDios SmartDiff用于大规模数据差异分析
链接:https://arxiv.org/abs/2509.00293

作者:uri, Yashwant Tailor
备注:10 pages, 4 figures


【19】Mitigating Clinician Information Overload: Generative AI for Integrated EHR and RPM Data Analysis
标题:缓解临床医生信息过载:用于集成EHR和RP数据分析的生成人工智能
链接:https://arxiv.org/abs/2509.00073

作者:tgaonkar, Dipen Pradhan, Lakshit Arora, Sanjay Surendranath Girija, Shashank Kapoor, Aman Raj
备注:Accepted at IEEE COMPSAC 2025


【20】From Data to Decision: A Multi-Stage Framework for Class Imbalance Mitigation in Optical Network Failure Analysis
标题:从数据到决策:光网络故障分析中缓解类失衡的多阶段框架
链接:https://arxiv.org/abs/2509.00057

作者:iz Ali, Jaroslaw E. Prilepsky, Nicola Sambo, Joao Pedro, Mohammad M. Hosseini, Antonio Napoli, Sergei K. Turitsyn, Pedro Freire


【21】Probabilities of Causation and Root Cause Analysis with Quasi-Markovian Models
标题:用拟马尔科夫模型进行因果关系的可能性和根本原因分析
链接:https://arxiv.org/abs/2509.02535

作者:ocha Laurentino, Fabio Gagliardi Cozman, Denis Deratani Maua, Daniel Angelo Esteves Lawand, Davi Goncalves Bezerra Coelho, Lucas Martins Marques
备注:Accepted at the 35th Brazilian Conference on Intelligent Systems   (BRACIS 2025)


【22】Using explainable artificial intelligence (XAI) as a diagnostic tool: An application for deducing hydrologic connectivity at watershed scale
标题:使用可解释人工智能(XAI)作为诊断工具:在流域尺度上推导水文连通性的应用
链接:https://arxiv.org/abs/2509.02127

作者: Jiyu Li, Yifan Chai, Lin Liu, Murugesu Sivapalan, Qihua Ran
备注:29 pages, 12 figures


【23】Inference in Spreading Processes with Neural-Network Priors
标题:具有神经网络先验的传播过程中的推理
链接:https://arxiv.org/abs/2509.02073

作者:io, Fabrizio Boncoraglio, Lenka Zdeborová
备注:26 pages, 13 figures


【24】Temporal Representation Learning for Real-Time Ultrasound Analysis
标题:实时超声分析的时间表示学习
链接:https://arxiv.org/abs/2509.01433

作者:ler, Thomas M. Sutter, Ece Ozkan, Julia E. Vogt
备注:ICMl 2025 Workshop


【25】Convergence Analysis of the PAGE Stochastic Algorithm for Convex Finite-Sum Optimization
标题:凸函数和优化的PAGE随机算法的收敛性分析
链接:https://arxiv.org/abs/2509.00737

作者:ondat, Peter Richtárik


【26】Simulation-based inference of yeast centromeres
标题:基于仿真的酵母着丝粒推断
链接:https://arxiv.org/abs/2509.00200

作者:uron, Pedro L. C. Rodrigues, Julyan Arbel, Nelle Varoquaux, Michael Arbel


检测相关(11篇)

【1】ESTM: An Enhanced Dual-Branch Spectral-Temporal Mamba for Anomalous Sound Detection
标题:ESTM:用于异常声音检测的增强型双分支频谱-时间曼巴
链接:https://arxiv.org/abs/2509.02471

作者: Ma, Peng Jia, Hongyue Guo, Wenming Yang
备注:Accepted in IEEE Signal Processing Letters 2025


【2】An Efficient Intrusion Detection System for Safeguarding Radiation Detection Systems
标题:用于保障辐射检测系统的高效入侵检测系统
链接:https://arxiv.org/abs/2509.01599

作者: Coolidge, Jaime González Sanz, Li Yang, Khalil El Khatib, Glenn Harvel, Nelson Agbemava, I Putu Susila, Mehmet Yavuz Yagci
备注:Preprint author original pre review. Accepted and Presented at ISOFIC   2024. The official proceedings version is available on the conference site


【3】Securing Radiation Detection Systems with an Efficient TinyML-Based IDS for Edge Devices
标题:通过针对边缘设备的高效基于TinyML的IDS保护辐射检测系统
链接:https://arxiv.org/abs/2509.01592

作者:Rivas Pizarro, Wajiha Zaheer, Li Yang, Khalil El-Khatib, Glenn Harvel
备注:Preprint author original pre review. Accepted and Presented at NPIC &   HMIT 2025. The official proceedings version is available in the ANS Digital   Library


【4】Detecting Rug Pulls in Decentralized Exchanges: Machine Learning Evidence from the TON Blockchain
标题:检测去中心化交易所中的地毯拉扯:来自TON区块链的机器学习证据
链接:https://arxiv.org/abs/2509.01168

作者:remus, Jianghai Li, Alisa Kalacheva, Igor Vodolazov, Yury Yanovich


【5】CCE: Confidence-Consistency Evaluation for Time Series Anomaly Detection
标题:CCE:时间序列异常检测的置信度一致性评估
链接:https://arxiv.org/abs/2509.01098

作者:ong, Zhiwen Yu, Yiu-ming Cheung, Kaixiang Yang
备注:17 pages, 10 figures, 6 tables


【6】NeuralSVCD for Efficient Swept Volume Collision Detection
标题:用于高效扫描体积碰撞检测的NeuralSVCD
链接:https://arxiv.org/abs/2509.00499

作者:on, Hojin Jung, Beomjoon Kim
备注:CoRL 2025


【7】Robust Detection of Synthetic Tabular Data under Schema Variability
标题:模式可变性下合成表格数据的鲁棒检测
链接:https://arxiv.org/abs/2509.00092

作者:l N. Kindji (MALT), Elisa Fromont (MALT), Lina Maria Rojas-Barahona, Tanguy Urvoy


【8】Data Cartography for Detecting Memorization Hotspots and Guiding Data Interventions in Generative Models
标题:用于检测并行化热点并指导生成模型中的数据干预的数据制图
链接:https://arxiv.org/abs/2509.00083

作者:el, Neel Shanbhag
备注 :6 pages, 2 figures, 1 table; Presented at the 42nd International Conference on Machine Learning (ICML), winning the "Best Poster" award at ICML's workshop for data in generative models (DIG-BUGS)


【9】Applying Deep Learning to Anomaly Detection of Russian Satellite Activity for Indications Prior to Military Activity
标题:应用深度学习对俄罗斯卫星活动异常检测军事活动前的迹象
链接:https://arxiv.org/abs/2509.00050

作者:tenbach, Megan Manly, Zach Metzinger


【10】Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning
标题:使用深度学习自动检测和纠正《古兰经》学习者的发音错误
链接:https://arxiv.org/abs/2509.00094

作者:Abdelfattah, Mahmoud I. Khalil, Hazem Abbas


【11】Exploring the Efficacy of Convolutional Neural Networks in Sleep Apnea Detection from Single Channel EEG
标题:探索卷积神经网络在单通道脑电检测睡眠呼吸暂停中的有效性
链接:https://arxiv.org/abs/2509.00012

作者:Siu, Hossein Miri
备注:5 pages, 6 figures, 1 table


分类|识别(10篇)

【1】L3Cube-IndicHeadline-ID: A Dataset for Headline Identification and Semantic Evaluation in Low-Resource Indian Languages
标题:L3 Cube-IndicHeadline-ID:用于低资源印度语言标题识别和语义评估的数据集
链接:https://arxiv.org/abs/2509.02503

作者:anksale, Tanmay Kokate, Darshan Gohad, Sarvadnyaa Barate, Raviraj Joshi


【2】Extrapolated Markov Chain Oversampling Method for Imbalanced Text Classification
标题:不平衡文本分类的外推马尔科夫链过抽样方法
链接:https://arxiv.org/abs/2509.02332

作者:ela, Pauliina Ilmonen


【3】Selection of Optimal Number and Location of PMUs for CNN Based Fault Location and Identification
标题:基于CNN的故障定位和识别的最佳PFA数量和位置选择
链接:https://arxiv.org/abs/2509.02192

作者:ud Khattak, Muhammad A. Choudhry
备注:Paper submitted to 57th North American Power Symposium (NAPS) 2025


【4】Simulating classification models to evaluate Predict-Then-Optimize methods
标题:模拟分类模型以评估预测然后优化方法
链接:https://arxiv.org/abs/2509.02191

作者:et


【5】Music Genre Classification Using Machine Learning Techniques
标题:使用机器学习技术的音乐流派分类
链接:https://arxiv.org/abs/2509.01762

作者:shra, Ryyan Akhtar
备注:10 pages, 20 figures. Submitted in partial fulfillment of the requirements for the Bachelor of Technology (this http URL) degree in Artificial Intelligence and Data Science


【6】Causal Sensitivity Identification using Generative Learning
标题:使用生成学习进行因果敏感性识别
链接:https://arxiv.org/abs/2509.01352

作者:yopadhyay, Sudeshna Sarkar
备注:11 pages, 7 figures, Accepted at the IJCAI 2025 Workshop on Causal Learning for Recommendation Systems (CLRS). [OpenReview link: this https URL ]


【7】Speech Command Recognition Using LogNNet Reservoir Computing for Embedded Systems
标题:嵌入式系统中使用LogNNet水库计算的语音命令识别
链接:https://arxiv.org/abs/2509.00862

作者:tov, Andrei Velichko
备注:20 pages, 6 figures


【8】Attribute Fusion-based Classifier on Framework of Belief Structure
标题:基于信念结构框架的属性融合分类器
链接:https://arxiv.org/abs/2509.00754

作者:, Yingying Liang, Qianli Zhou, Witold Pedrycz


【9】Identifying Causal Direction via Dense Functional Classes
标题:通过密集功能类识别因果方向
链接:https://arxiv.org/abs/2509.00538

作者:Hlavackova-Schindler, Suzana Marsela


【10】DeepEmoNet: Building Machine Learning Models for Automatic Emotion Recognition in Human Speeches
标题:Deepspel Net:构建用于人类言语中自动情感识别的机器学习模型
链接:https://arxiv.org/abs/2509.00025

作者


表征(4篇)

【1】A Continuous Encoding-Based Representation for Efficient Multi-Fidelity Multi-Objective Neural Architecture Search
标题:基于连续编码的高效多保真多目标神经架构搜索表示
链接:https://arxiv.org/abs/2509.01943

作者: Chin Chun Ooi, Yew-Soon Ong


【2】Causal representation learning from network data
标题:从网络数据中学习因果表示
链接:https://arxiv.org/abs/2509.01916

作者:ng, Michelle M. Li, Elena Zheleva


【3】SC-GIR: Goal-oriented Semantic Communication via Invariant Representation Learning
标题:SC-GIR:通过不变表示学习实现面向目标的语义沟通
链接:https://arxiv.org/abs/2509.01119

作者:nsaja Wanasekara, Van-Dinh Nguyen, Kok-Seng, M.-Duong Nguyen, Symeon Chatzinotas, Octavia A. Dobre
备注:16 pages, Accepted to IEEE Transactions on Mobile Computing


【4】T-MLP: Tailed Multi-Layer Perceptron for Level-of-Detail Signal Representation
标题:T-MLP:用于细节级别信号表示的尾部多层感知器
链接:https://arxiv.org/abs/2509.00066

作者:g Yang, Yuanfeng Zhou, Guangshun Wei, Siyu Ren, Yuan Liu, Junhui Hou, Wenping Wang


3D|3D重建等相关(2篇)

【1】LUCIE-3D: A three-dimensional climate emulator for forced responses
标题:LUCY-3D:用于强制响应的三维气候模拟器
链接:https://arxiv.org/abs/2509.02061

作者:an, Troy Arcomano, Ashesh Chattopadhyay, Romit Maulik


【2】TransForSeg: A Multitask Stereo ViT for Joint Stereo Segmentation and 3D Force Estimation in Catheterization
标题:TransForSeg:用于导管插入术中关节立体分割和3D力估计的多任务立体ViT
链接:https://arxiv.org/abs/2509.01605

作者:kri, Mehrdad Zadeh, Javad Dargahi
备注:Preprint version. This work is intended for future journal submission


编码器(3篇)

【1】Autoencoder-based non-intrusive model order reduction in continuum mechanics
标题:连续体力学中基于自动编码器的非侵入模型降阶
链接:https://arxiv.org/abs/2509.02237

作者:ehls, Ellen Kuhl, Tim Brepols, Kevin Linka, Hagen Holthusen


【2】ReLATE: Learning Efficient Sparse Encoding for High-Performance Tensor Decomposition
标题:ReLATE:学习高效的稀疏编码以实现高性能张量分解
链接:https://arxiv.org/abs/2509.00280

作者:Helal, Fabio Checconi, Jan Laukemann, Yongseok Soh, Jesmin Jahan Tithi, Fabrizio Petrini, Jee Choi


【3】Quantum Circuits for Quantum Convolutions: A Quantum Convolutional Autoencoder
标题:量子卷积的量子电路:量子卷积自动编码器
链接:https://arxiv.org/abs/2509.00637

作者:duz, Pablo Rivas, Erich Baker
备注:The 23rd International Conference on Artificial Intelligence (ICAI 2021)


优化|敛散性(13篇)

【1】Surrogate Benchmarks for Model Merging Optimization
标题:模型合并优化的替代基准
链接:https://arxiv.org/abs/2509.02555

作者:ki, Yuya Kudo, Nozomu Yoshinari, Yoichi Hirose, Toshiyuki Nishimoto, Kento Uchida, Shinichi Shirakawa
备注:AutoML 2025 Non-Archival Content Track


【2】DCPO: Dynamic Clipping Policy Optimization
标题:DCPO:动态剪裁政策优化
链接:https://arxiv.org/abs/2509.02333

作者:ng, Chengfeng Dou, Peidong Guo, Kai Lu, Qiang Ju, Fei Deng, Rihui Xin


【3】Threshold-Based Optimal Arm Selection in Monotonic Bandits: Regret Lower Bounds and Algorithms
标题:单调盗贼中基于阈值的最佳手臂选择:遗憾下限和算法
链接:https://arxiv.org/abs/2509.02119

作者:Varude, Jay Chaudhary, Siddharth Kaushik, Prasanna Chaporkar


【4】Differentiable Expectation-Maximisation and Applications to Gaussian Mixture Model Optimal Transport
标题:差异期望最大化及其在高斯混合模型最优运输中的应用
链接:https://arxiv.org/abs/2509.02109

作者:ïté, Eloi Tanguy, Julie Delon, Agnès Desolneux, Rémi Flamary


【5】Privacy-Utility Trade-off in Data Publication: A Bilevel Optimization Framework with Curvature-Guided Perturbation
标题 :数据发布中的隐私与效用权衡:具有曲线引导扰动的二层优化框架
链接:https://arxiv.org/abs/2509.02048

作者:uangquan Zhang, Hua Zuo, Jie Lu


【6】Computational Fluid Dynamics Optimization of F1 Front Wing using Physics Informed Neural Networks
标题:利用物理信息神经网络进行F1前翼计算流体动力学优化
链接:https://arxiv.org/abs/2509.01963

作者:h
备注:10 pages, 3 figures


【7】Globally aware optimization with resurgence
标题:具有全球意识的优化与复兴
链接:https://arxiv.org/abs/2509.01329

作者
备注:11+9 pages, 3 figures


【8】Quantum-based QoE Optimization in Advanced Cellular Networks: Integration and Cloud Gaming Use Case
标题:高级蜂窝网络中基于量子的QOE优化:集成和云游戏用例
链接:https://arxiv.org/abs/2509.01008

作者:ouech, Javier Villegas, António Pereira, Carlos Baena, Sergio Fortes, Raquel Barco, Dominic Gribben, Mohammad Dib, Alba Villarino, Aser Cortines, Román Orús


【9】An Evolutionary Multi-objective Optimization for Replica-Exchange-based Physics-informed Operator Learning Network
标题:基于复制品交换的物理信息操作员学习网络的进化多目标优化
链接:https://arxiv.org/abs/2509.00663

作者:Lu, Changhong Mou, Guang Lin


【10】Optimized Weight Initialization on the Stiefel Manifold for Deep ReLU Neural Networks
标题:深度ReLU神经网络Stiefel Manifold上的优化权重分配
链接:https://arxiv.org/abs/2509.00362

作者:e, Taehyeong Kim, Hayoung Choi
备注:16 pages, 3 figures, 3 tables


【11】Solving Optimal Power Flow using a Variational Quantum Approach
标题:使用变分量子方法求解最优潮流
链接:https://arxiv.org/abs/2509.00341

作者:t Le, Mark M. Wilde, Vassilis Kekatos
备注:22 pages, 7 figures, 2 tables


【12】Quantum-Optimized Selective State Space Model for Efficient Time Series Prediction
标题:用于高效时间序列预测的量子优化选择性状态空间模型
链接:https://arxiv.org/abs/2509.00259

作者:exandru Jura, Mihai Udrescu, Alexandru Topirceanu


【13】Optimal information injection and transfer mechanisms for active matter reservoir computing
标题:活性物质储层计算的最佳信息注入和传输机制
链接:https://arxiv.org/abs/2509.01799

作者:Gaimann, Miriam Klopotek
备注:53 pages, 23 figures. Supplementary Videos: this https URL. Replication Data: this https URL


预测|估计(21篇)

【1】RDIT: Residual-based Diffusion Implicit Models for Probabilistic Time Series Forecasting
标题:RDIT:用于概率时间序列预测的基于剩余的扩散隐式模型
链接:https://arxiv.org/abs/2509.02341

作者:ai, Yu-Chien Ning, Duane S. Boning


【2】ST-Hyper: Learning High-Order Dependencies Across Multiple Spatial-Temporal Scales for Multivariate Time Series Forecasting
标题:ST-Hyper:跨多个时空尺度学习高层相依性以进行多元时间序列预测
链接:https://arxiv.org/abs/2509.02217

作者:u, Jianlong Huang, Zongjiang Shang, Ling Chen
备注:Accepted by CIKM 2025


【3】Semantic and episodic memories in a predictive coding model of the neocortex
标题:新皮质预测编码模型中的语义和情景记忆
链接:https://arxiv.org/abs/2509.01987

作者:taine (Mnemosyne), Frédéric Alexandre (Mnemosyne)
备注:None


【4】RadioDiff-Loc: Diffusion Model Enhanced Scattering Congnition for NLoS Localization with Sparse Radio Map Estimation
标题:RadioDiff-Loc:利用稀疏无线电地图估计的NLoS定位的扩散模型增强散射干扰
链接:https://arxiv.org/abs/2509.01875

作者:Wang, Qiming Zhang, Nan Cheng


【5】Optimizing In-Context Learning for Efficient Full Conformal Prediction
标题:优化上下文学习以实现高效的全共形预测
链接:https://arxiv.org/abs/2509.01840

作者:ng, Sangwoo Park, Min Li, Osvaldo Simeone
备注:6 pages, 3 figures


【6】Multi-vessel Interaction-Aware Trajectory Prediction and Collision Risk Assessment
标题:多船舶相互作用感知轨迹预测和碰撞风险评估
链接:https://arxiv.org/abs/2509.01836

作者: Alam, Jose F. Rodrigues-Jr, Gabriel Spadon


【7】REVELIO -- Universal Multimodal Task Load Estimation for Cross-Domain Generalization
标题:REVELIO --用于跨域概括的通用多模式任务负载估计
链接:https://arxiv.org/abs/2509.01642

作者:n P. Oppelt, Andreas Foltyn, Nadine R. Lang-Richter, Bjoern M. Eskofier


【8】Entropy-Driven Curriculum for Multi-Task Training in Human Mobility Prediction
标题:人类移动预测多任务训练的信息驱动课程
链接:https://arxiv.org/abs/2509.01613

作者:ng, Xuanshu Luo, Martin Werner


【9】From Discord to Harmony: Decomposed Consonance-based Training for Improved Audio Chord Estimation
标题:从不和谐到和谐:用于改进音频和弦估计的分解基于协和的训练
链接:https://arxiv.org/abs/2509.01588

作者:ltronieri, Xavier Serra, Martín Rocamora
备注:9 pages, 3 figures, 3 tables


【10】Direct Profit Estimation Using Uplift Modeling under Clustered Network Interference
标题:网络干扰下利用USYS模型估计直接利润
链接:https://arxiv.org/abs/2509.01558

作者:den Akker
备注:None


【11】AT Loss: Advanced Torrential Loss Function for Precipitation Forecasting
标题:AT损失:用于降水预测的高级乌龟损失函数
链接:https://arxiv.org/abs/2509.01348

作者:i, Hyeri Kim, Kwang-Ho Kim, Jaesung Lee


【12】StoxLSTM: A Stochastic Extended Long Short-Term Memory Network for Time Series Forecasting
标题:StoxLSTM:用于时间序列预测的随机扩展长短期记忆网络
链接:https://arxiv.org/abs/2509.01187

作者:g, Yunjie Li, Lingmin Zan, Zheng Gong, Mengtao Zhu


【13】Nonlinear Performative Prediction
标题:非线性表演预测
链接:https://arxiv.org/abs/2509.01139

作者:g Zhong, Yang Liu, Jiming Liu


【14】Crystal Structure Prediction with a Geometric Permutation-Invariant Loss Function
标题:用几何排列不变损失函数预测晶体结构
链接:https://arxiv.org/abs/2509.00832

作者:Jehanno, Romain Menegaux, Julien Mairal, Sergei Grudinin


【15】IndiaWeatherBench: A Dataset and Benchmark for Data-Driven Regional Weather Forecasting over India
标题:IndiaWeatherBench:印度数据驱动区域天气预报的数据集和基准
链接:https://arxiv.org/abs/2509.00653

作者:en, Harkanwar Singh, Nilay Naharas, Lucas Bandarkar, Aditya Grover


【16】Progressive Element-wise Gradient Estimation for Neural Network Quantization
标题:神经网络量化的逐元素渐进梯度估计
链接:https://arxiv.org/abs/2509.00097

作者:o


【17】Distribution estimation via Flow Matching with Lipschitz guarantees
标题:通过Lipschitz保证的流匹配进行分布估计
链接:https://arxiv.org/abs/2509.02337

作者:l


【18】Online Complexity Estimation for Repetitive Scenario Design
标题:重复性场景设计的在线复杂性估计
链接:https://arxiv.org/abs/2509.02103

作者: O. Berger, Raphaël M. Jungers


【19】An Observations-focused Assessment of Global AI Weather Prediction Models During the South Asian Monsoon
标题:南亚季风期间全球人工智能天气预测模型的以观测为中心的评估
链接:https://arxiv.org/abs/2509.01879

作者:a, Aditi Sheshadri, Dhruv Suri


【20】Exploring Quantum Machine Learning for Weather Forecasting
标题:探索量子机器学习用于天气预报
链接:https://arxiv.org/abs/2509.01422

作者:oísa F. da Silva, Gleydson F. de Jesus, Christiano M. S. Nascimento, Valéria L. da Silva, Clebson Cruz


【21】MedFormer: a data-driven model for forecasting the Mediterranean Sea
标题:MedFormer:预测地中海的数据驱动模型
链接:https://arxiv.org/abs/2509.00015

作者:coco, Davide Donno, Gabriele Accarino, Simone Norberti, Alessandro Grandi, Michele Giurato, Ronan McAdam, Donatello Elia, Emanuela Clementi, Paola Nassisi, Enrico Scoccimarro, Giovanni Coppini, Silvio Gualdi, Giovanni Aloisio, Simona Masina, Giulio Boccaletti, Antonio Navarra
备注:29 pages, 51 images, it will be submitted to Science


其他神经网络|深度学习|模型|建模(57篇)

【1】DynaGuard: A Dynamic Guardrail Model With User-Defined Policies
标题:DynaGuard:具有用户定义策略的动态保护模型
链接:https://arxiv.org/abs/2509.02563

作者:ver, Vatsal Baherwani, Neel Jain, Khalid Saifullah, Joseph Vincent, Chirag Jain, Melissa Kazemi Rad, C. Bayan Bruss, Ashwinee Panda, Tom Goldstein
备注:22 Pages


【2】On Transferring, Merging, and Splitting Task-Oriented Network Digital Twins
标题:面向任务的网络数字双胞胎的转移、合并和拆分
链接:https://arxiv.org/abs/2509.02551

作者:ng, Minghong Fang, Mingzhe Chen, Yuchen Liu
备注:Accepted by IEEE MobiWac 2025


【3】Is RL fine-tuning harder than regression? A PDE learning approach for diffusion models
标题:RL微调比回归更难吗?扩散模型的PDL学习方法
链接:https://arxiv.org/abs/2509.02528

作者:ou


【4】Flavors of Moonshine: Tiny Specialized ASR Models for Edge Devices
标题:Moonshine的味道:用于边缘设备的微型专用ASR模型
链接:https://arxiv.org/abs/2509.02523

作者:, Adam Sabra, Manjunath Kudlur, James Wang, Pete Warden


【5】Fisher information flow in artificial neural networks
标题:人工神经网络中的Fisher信息流
链接:https://arxiv.org/abs/2509.02407

作者:n Weimar, Lukas M. Rachbauer, Ilya Starshynov, Daniele Faccio, Linara Adilova, Dorian Bouchet, Stefan Rotter
备注:17 pages, 12 figures, to be published in Physical Review X


【6】Scaffolding Collaborative Learning in STEM: A Two-Year Evaluation of a Tool-Integrated Project-Based Methodology
标题:STEM中的协作学习框架:基于工具集成项目的方法论的两年评估
链接:https://arxiv.org/abs/2509.02355

作者:Fuster-Barcelo, Gonzalo R. Rios-Munoz, Arrate Munoz-Barrutia


【7】Balanced Multimodal Learning: An Unidirectional Dynamic Interaction Perspective
标题 :平衡多模式学习:单向动态交互视角
链接:https://arxiv.org/abs/2509.02281

作者:ng, Li Zhang, Xinyan Liang, Yuhua Qian, Shen Hu


【8】VariAntNet: Learning Decentralized Control of Multi-Agent Systems
标题:VariAntNet:多智能体系统的学习分散控制
链接:https://arxiv.org/abs/2509.02271

作者:fman, Erez Koifman, Eran Iceland, Ariel Barel, Alfred M. Bruckstein


【9】DaCe AD: Unifying High-Performance Automatic Differentiation for Machine Learning and Scientific Computing
标题:Dace AD:统一机器学习和科学计算的高性能自动区分
链接:https://arxiv.org/abs/2509.02197

作者:aoud, Alexandru Calotoiu, Marcin Copik, Torsten Hoefler


【10】DivMerge: A divergence-based model merging method for multi-tasking
标题:DivMerge:一种用于多任务处理的基于分歧的模型合并方法
链接:https://arxiv.org/abs/2509.02108

作者: Brahim, Fosse Loïc, Damnati Géraldine, Lecorvé Gwénolé


【11】Towards Comprehensive Information-theoretic Multi-view Learning
标题:走向综合信息论的多视角学习
链接:https://arxiv.org/abs/2509.02084

作者: Yunshan Ye, Wenjie Wang, Tao Lei, Yu Zhao, Gang Kou, Badong Chen


【12】Genetic Programming with Model Driven Dimension Repair for Learning Interpretable Appointment Scheduling Rules
标题:具有模型驱动维度修复的遗传编程用于学习可解释的预约安排规则
链接:https://arxiv.org/abs/2509.02034

作者:g, Yang Wang, Ya-Hui Jia, Yi Mei
备注:This work has been submitted to the IEEE for possible publication


【13】BM-CL: Bias Mitigation through the lens of Continual Learning
标题:BM-CL:通过持续学习的视角缓解偏见
链接:https://arxiv.org/abs/2509.01730

作者:silla, Rodrigo Echeveste, Camila Gonzalez, Diego H. Milone, Enzo Ferrante


【14】Constrained Decoding for Robotics Foundation Models
标题:机器人基础模型的约束解码
链接:https://arxiv.org/abs/2509.01728

作者:or, Akila Ganlath, Changliu Liu, Sebastian Scherer, Eunsuk Kang


【15】Distilled Pretraining: A modern lens of Data, In-Context Learning and Test-Time Scaling
标题:提炼预训练:数据、上下文学习和测试时间缩放的现代视角
链接:https://arxiv.org/abs/2509.01649

作者:yal, David Lopez-Paz, Kartik Ahuja


【16】Model Unmerging: Making Your Models Unmergeable for Secure Model Sharing
标题:模型分解:使您的模型无法进行安全的模型共享
链接:https://arxiv.org/abs/2509.01548

作者:g, Enneng Yang, Lu Yin, Shiwei Liu, Li Shen


【17】Forward-Only Continual Learning
标题:仅向前推进的持续学习
链接:https://arxiv.org/abs/2509.01533

作者:, Jiayi He, Fangfang Chen, Zuohong Lv, Jianhua Tang


【18】CbLDM: A Diffusion Model for recovering nanostructure from pair distribution function
标题:GbLDM:从对分布函数恢复纳米结构的扩散模型
链接:https://arxiv.org/abs/2509.01370

作者:o, Zhiyang Zhang, Heming Wang, Jun Xu, Ling Lan, Ran Gu


【19】Re3: Learning to Balance Relevance & Recency for Temporal Information Retrieval
标题:Re3:学习平衡时态信息检索的相关性和近因性
链接:https://arxiv.org/abs/2509.01306

作者:o, Jie Ouyang, Zhaomeng Zhou, Mingyue Cheng, Yupeng Li, Jiaxian Yan, Qi Liu


【20】Equivariant U-Shaped Neural Operators for the Cahn-Hilliard Phase-Field Model
标题:Cahn-Hilliard相场模型的等变U形神经运算符
链接:https://arxiv.org/abs/2509.01293

作者: M.F.P. ten Eikelder, Tianyue Yang, Yiqing Li, Kan He, Shuo Wang, Peter V. Coveney


【21】A Class of Random-Kernel Network Models
标题:一类随机核网络模型
链接:https://arxiv.org/abs/2509.01090

作者:n


【22】IMU-Enhanced EEG Motion Artifact Removal with Fine-Tuned Large Brain Models
标题:利用微调大大脑模型消除IMU增强的脑电运动预设
链接:https://arxiv.org/abs/2509.01073

作者:ang, Xusheng Zhu, Yuchen Xu, ChiaEn Lu, Hsinyu Shih, Gert Cauwenberghs, Tzyy-Ping Jung
备注:Accepted to IEEE EMBS 12th International Conference on Neural Engineering (NER 2025)


【23】Chronotome: Real-Time Topic Modeling for Streaming Embedding Spaces
标题:Chronotome:流媒体嵌入空间的实时主题建模
链接:https://arxiv.org/abs/2509.01051

作者:, Catherine Yeh, Martin Wattenberg, Fernanda Viégas, Panagiotis Michalatos
备注:Accepted to IEEE VIS 2025 Short Paper Track (5 pages, 4 figures)


【24】DELTA: Variational Disentangled Learning for Privacy-Preserving Data Reprogramming
标题:Delta:用于隐私保护数据重编程的变分解纠缠学习
链接:https://arxiv.org/abs/2509.00693

作者:esh Malarkkan, Haoyue Bai, Anjali Kaushik, Yanjie Fu
备注:10 pages, 5 figures, 3 Tables. Accepted at IEEE International Conference on Data Mining (ICDM) 2025


【25】LLaVA-Critic-R1: Your Critic Model is Secretly a Strong Policy Model
标题:LLaVA-批评者-R1:你的批评者模型秘密地是一个强大的政策模型
链接:https://arxiv.org/abs/2509.00676

作者:g, Chunyuan Li, Jianwei Yang, Kai Zhang, Bo Liu, Tianyi Xiong, Furong Huang


【26】Face4FairShifts: A Large Image Benchmark for Fairness and Robust Learning across Visual Domains
标题:Face 4FairShifts:跨视觉领域公平和稳健学习的大型图像基准
链接:https://arxiv.org/abs/2509.00658

作者:n, Dong Li, Xintao Wu, Minglai Shao, Xujiang Zhao, Zhong Chen, Chen Zhao


【27】Context-Action Embedding Learning for Off-Policy Evaluation in Contextual Bandits
标题:情境行动嵌入学习,用于情境盗贼的非政策评估
链接:https://arxiv.org/abs/2509.00648

作者:Chandak, Vincent Liu, Haanvid Lee


【28】AMCR: A Framework for Assessing and Mitigating Copyright Risks in Generative Models
标题:AMCR:评估和缓解生成模型中版权风险的框架
链接:https://arxiv.org/abs/2509.00641

作者:in, Zichong Wang, Avash Palikhe, Zhen Liu, Jun Liu, Wenbin Zhang


【29】Gated Associative Memory: A Parallel O(N) Architecture for Efficient Sequence Modeling
标题:门控关联存储器:用于高效序列建模的并行O(N)架构
链接:https://arxiv.org/abs/2509.00605

作者:Acharya
备注:11 pages, 4 figures, 3 tables


【30】Learning Dolly-In Filming From Demonstration Using a Ground-Based Robot
标题:使用地面机器人通过演示学习娃娃拍摄
链接:https://arxiv.org/abs/2509.00574

作者:rimer, Alan Hunter, Wenbin Li
备注:Preprint; under double-anonymous review. 6 pages


【31】Localizing and Mitigating Memorization in Image Autoregressive Models
标题:图像自回归模型中的局部化和减轻局部化
链接:https://arxiv.org/abs/2509.00488

作者:sliwal, Franziska Boenisch, Adam Dziedzic
备注:Accepted at ICML 2025 Workshop on the Impact of Memorization on Trustworthy Foundation Models


【32】Theory Foundation of Physics-Enhanced Residual Learning
标题:物理增强剩余学习的理论基础
链接:https://arxiv.org/abs/2509.00348

作者:iang, Wang Chen, Keke Long, Peng Zhang, Xiaopeng Li, Jintao Ke
备注:24 pages, 8 figures


【33】Scalable Option Learning in High-Throughput Environments
标题:高吞吐量环境中的可扩展期权学习
链接:https://arxiv.org/abs/2509.00338

作者:naff, Scott Fujimoto, Michael Rabbat


【34】Are We Really Learning the Score Function? Reinterpreting Diffusion Models Through Wasserstein Gradient Flow Matching
标题:我们真的在学习分数函数吗?通过Wasserstein梯度流匹配重新解释扩散模型
链接:https://arxiv.org/abs/2509.00336

作者:ng, Michael T. McCann, Javier E. Santos, Yen Ting Lin


【35】Chunked TabPFN: Exact Training-Free In-Context Learning for Long-Context Tabular Data
标题:分块TabPFN:针对长上下文表格数据的精确免训练的上下文学习
链接:https://arxiv.org/abs/2509.00326

作者:gazinov, Shao-An Yin
备注:14 pages, 6 figures


【36】Speech Foundation Models Generalize to Time Series Tasks from Wearable Sensor Data
标题:语音基础模型从可穿戴传感器数据推广到时间序列任务
链接:https://arxiv.org/abs/2509.00221

作者:in, Zakaria Aldeneh, Shirley Ren
备注:Preprint, under review


【37】First Order Model-Based RL through Decoupled Backpropagation
标题:通过去耦合反向传播的基于一阶模型的RL
链接:https://arxiv.org/abs/2509.00215

作者:igo, Rooholla Khorrambakht, Elliot Chane-Sane, Nicolas Mansard, Ludovic Righetti
备注:CoRL 2025. Project website: this https URL


【38】WoSNN: Stochastic Solver for PDEs with Machine Learning
标题:WoSNN:带有机器学习的随机偏微分方程求解器
链接:https://arxiv.org/abs/2509.00204

作者:g, Arash Fahim, Michael Mascagni
备注:None


【39】Principled Approximation Methods for Efficient and Scalable Deep Learning
标题:高效且可扩展的深度学习的原则逼近方法
链接:https://arxiv.org/abs/2509.00174

作者:arese
备注:PhD thesis


【40】Exploiting a Mixture-of-Layers in an Electrocardiography Foundation Model
标题:利用心电图基础模型中的混合层
链接:https://arxiv.org/abs/2509.00102

作者:uyen, Huy Phan, Hieu Pham, Christos Chatzichristos, Bert Vandenberk, Maarten De Vos


【41】Teaching AI to Remember: Insights from Brain-Inspired Replay in Continual Learning
标题:教人工智能记住:持续学习中脑启发重演的见解
链接:https://arxiv.org/abs/2509.00047

作者


【42】Industrial Steel Slag Flow Data Loading Method for Deep Learning Applications
标题:深度学习应用的工业钢渣流数据加载方法
链接:https://arxiv.org/abs/2509.00034

作者:i, Ana Cardoso, Francisco de Assis Boldt, Patrick Dumond


【43】Wild Refitting for Model-Free Excess Risk Evaluation of Opaque ML/AI Models under Bregman Loss
标题:Bregman损失下不透明ML/AI模型的无模型超额风险评估的疯狂重新调整
链接:https://arxiv.org/abs/2509.02476

作者:u, David Simchi-Levi


【44】Morphology-Specific Peptide Discovery via Masked Conditional Generative Modeling
标题:通过掩蔽条件生成模型发现形态特异性肽
链接:https://arxiv.org/abs/2509.02060

作者:a, Julija Zavadlav
备注:17 pages, 4 figures, 2 tables


【45】Non-Linear Model-Based Sequential Decision-Making in Agriculture
标题:基于非线性模型的农业顺序决策
链接:https://arxiv.org/abs/2509.01924

作者:ya, Wentao Lin


【46】Modeling and benchmarking quantum optical neurons for efficient neural computation
标题:量子光学神经元建模和基准测试以实现高效的神经计算
链接:https://arxiv.org/abs/2509.01784

作者:drisani, Gennaro Vessio, Fabrizio Sgobba, Francesco Di Lena, Luigi Amato Santamaria, Giovanna Castellano


【47】A Hybrid Framework for Healing Semigroups with Machine Learning
标题:用机器学习治疗半群的混合框架
链接:https://arxiv.org/abs/2509.01763

作者:rikonda, Jasper van de Kreeke


【48】Lipschitz-Guided Design of Interpolation Schedules in Generative Models
标题:生成模型中的Lipschitz引导的内插表设计
链接:https://arxiv.org/abs/2509.01629

作者:n, Eric Vanden-Eijnden, Jiawei Xu


【49】Phase diagram and eigenvalue dynamics of stochastic gradient descent in multilayer neural networks
标题:多层神经网络随机梯度下降的阶段图和特征值动力学
链接:https://arxiv.org/abs/2509.01349

作者:rk (Swansea University), Biagio Lucini (Queen Mary University of London), Gert Aarts (Swansea University)
备注:27 pages, many figures


【50】Learning residue level protein dynamics with multiscale Gaussians
标题:用多尺度高斯学习剩余水平蛋白质动力学
链接:https://arxiv.org/abs/2509.01038

作者:na, Bowen Jing, Bonnie Berger


【51】Beyond Universal Approximation Theorems: Algorithmic Uniform Approximation by Neural Networks Trained with Noisy Data
标题:超越普遍逼近定理:用有噪数据训练的神经网络进行数学一致逼近
链接:https://arxiv.org/abs/2509.00924

作者: Kratsios, Tin Sum Cheng, Daniel Roy


【52】Learning with Mandelbrot and Julia
标题:与曼德尔布罗特和朱莉娅一起学习
链接:https://arxiv.org/abs/2509.00903

作者:jono, S.F. Feng, E.R.M. Putri, H. Susanto


【53】FBMS: An R Package for Flexible Bayesian Model Selection and Model Averaging
标题:FBM:一个用于灵活Bayesian模型选择和模型平均的R包
链接:https://arxiv.org/abs/2509.00753

作者:rommlet, Jon Lachmann, Geir Storvik, Aliaksandr Hubin
备注:69 pages, 5 tables, 5 figures


【54】A Novel Method to Determine Total Oxidant Concentration Produced by Non-Thermal Plasma Based on Image Processing and Machine Learning
标题:基于图像处理和机器学习的非热等离子体产生的氧化剂总浓度的新方法
链接:https://arxiv.org/abs/2509.00479

作者:ir Sancak, Unal Sen, Ulker Diler Keris-Sen
备注:This paper will be published later on


【55】Partial Functional Dynamic Backdoor Diffusion-based Causal Model
标题:基于部分功能性动态后门扩散的因果模型
链接:https://arxiv.org/abs/2509.00472

作者:u, Lei Qian, Song Xi Chen, Niansheng Tang
备注:10 pages, 2 figures


【56】Generalization vs. Memorization in Autoregressive Deep Learning: Or, Examining Temporal Decay of Gradient Coherence
标题:自回归深度学习中的概括与简化:或者,检查梯度一致性的时间衰减
链接:https://arxiv.org/abs/2509.00024

作者:rel, Nicolas Hengartner, Robyn Miller, Kamaljeet Singh, Siddharth Mansingh, Arvind Mohan, Benjamin Migliori, Emily Casleton, Alexei Skurikhin, Earl Lawrence, Gerd J. Kunde


【57】CERA: A Framework for Improved Generalization of Machine Learning Models to Changed Climates
标题:CERA:一个用于改进机器学习模型对变化气候的推广的框架
链接:https://arxiv.org/abs/2509.00010

作者:Liu, Paul A. O'Gorman


其他(68篇)

【1】MoPEQ: Mixture of Mixed Precision Quantized Experts
标题:MoPEQ:混合精度量化专家的混合
链接:https://arxiv.org/abs/2509.02512

作者:eja Chitty-Venkata, Jie Ye, Murali Emani
备注:Accepted by ICCV Bivision Workshop 2025


【2】RNN Generalization to Omega-Regular Languages
标题:RNN推广到Omega-Regular语言
链接:https://arxiv.org/abs/2509.02491

作者:ert, Dalal Alrajeh, Alessandra Russo
备注:7 pages, 3 figures. To be published in OVERLAY 2025, 7th International Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis. See this https URL


【3】VASSO: Variance Suppression for Sharpness-Aware Minimization
标题:VASSO:方差抑制以实现敏锐度最小化
链接:https://arxiv.org/abs/2509.02433

作者:Li, Yilang Zhang, Georgios B. Giannakis


【4】Evaluating Cumulative Spectral Gradient as a Complexity Measure
标题:将累积谱梯度评估为复杂性指标
链接:https://arxiv.org/abs/2509.02399

作者 : Abdul Ghani Naim, Ajaz Ahmad Bhat


【5】AudioCodecBench: A Comprehensive Benchmark for Audio Codec Evaluation
标题:AudioCodecBench:音频编解码器评估的全面基准
链接:https://arxiv.org/abs/2509.02349

作者:Hao Chen, Siyu Wu, Zhiyue Wu, Hao Zhou, Chengfeng Zhang, Ting Wang, Haodi Zhang


【6】Calibration through the Lens of Indistinguishability
标题:通过不可撤销的视角进行校准
链接:https://arxiv.org/abs/2509.02279

作者: Gopalan, Lunjia Hu
备注:This is the full version of a survey that appears in the ACM SIGecom Exchanges


【7】Data-Dependent Smoothing for Protein Discovery with Walk-Jump Sampling
标题:采用步行跳跃采样进行蛋白质发现的数据相关平滑
链接:https://arxiv.org/abs/2509.02069

作者:Anumasa, Barath Chandran.C, Tingting Chen, Dianbo Liu


【8】Fantastic Pretraining Optimizers and Where to Find Them
标题:出色的训练前优化器以及在哪里可以找到它们
链接:https://arxiv.org/abs/2509.02046

作者:n, David Hall, Tengyu Ma, Percy Liang
备注:108 pages, 8 figures, reproducible runs available at this https URL


【9】Vision-Based Embedded System for Noncontact Monitoring of Preterm Infant Behavior in Low-Resource Care Settings
标题:基于视觉的嵌入式系统用于在低资源护理环境中非接触式监测早产儿行为
链接:https://arxiv.org/abs/2509.02018

作者:ugisha, Rashid Kisitu, Francis Komakech, Excellence Favor
备注:23 pages. 5 tables, 8 figures


【10】Bouncy particle sampler with infinite exchanging parallel tempering
标题:无限交换平行钢化的弹性颗粒采样器
链接:https://arxiv.org/abs/2509.02003

作者:to, Shun Kimura, Koujin Takeda


【11】Entry Barriers in Content Markets
标题:内容市场的进入障碍
链接:https://arxiv.org/abs/2509.01953

作者:hu, Lexing Xie, Yun Kuen Cheung


【12】EigenBench: A Comparative Behavioral Measure of Value Alignment
标题:EigenBench:价值观一致的比较行为衡量标准
链接:https://arxiv.org/abs/2509.01938

作者:hang, Leonard Piff, Suvadip Sana, Jasmine X. Li, Lionel Levine


【13】Dynamic Speculative Agent Planning
标题:动态投机代理规划
链接:https://arxiv.org/abs/2509.01920

作者:n, Wenyue Hua, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, William Yang Wang
备注:19 pages, 11 figures


【14】AI-Driven Marine Robotics: Emerging Trends in Underwater Perception and Ecosystem Monitoring
标题:人工智能驱动的海洋机器人:水下感知和生态系统监测的新兴趋势
链接:https://arxiv.org/abs/2509.01878

作者:Raine, Tobias Fischer
备注:9 pages, 3 figures


【15】Preserving Bilinear Weight Spectra with a Signed and Shrunk Quadratic Activation Function
标题:用带符号和收缩二次激活函数保持双线性权重谱
链接:https://arxiv.org/abs/2509.01874

作者:hwo, Thomas Mosen


【16】Toward a Unified Benchmark and Taxonomy of Stochastic Environments
标题:走向随机环境的统一基准和分类
链接:https://arxiv.org/abs/2509.01793

作者:t Barsainyan, Jing Yu Lim, Dianbo Liu


【17】Convolutional Monge Mapping between EEG Datasets to Support Independent Component Labeling
标题:脑电数据集之间的卷积Monge映射以支持独立分量标记
链接:https://arxiv.org/abs/2509.01721

作者:ek, Carlos H. Mendoza-Cardenas, Austin J. Brockmeier
备注:Code available at: this https URL


【18】Relative Trajectory Balance is equivalent to Trust-PCL
标题:相对轨迹平衡相当于Trust-plc
链接:https://arxiv.org/abs/2509.01632

作者:eleu, Padideh Nouri, Yoshua Bengio, Doina Precup


【19】Effects of Distributional Biases on Gradient-Based Causal Discovery in the Bivariate Categorical Case
标题:分布偏差对双变量分类情形下基于因果关系发现的影响
链接:https://arxiv.org/abs/2509.01621

作者:be, Moritz Lange, Laurenz Wiskott, Maribel Acosta


【20】Prior-Guided Flow Matching for Target-Aware Molecule Design with Learnable Atom Number
标题:具有可学习原子数的目标感知分子设计的优先引导流匹配
链接:https://arxiv.org/abs/2509.01486

作者:Zhou, Hao Qian, Shikui Tu, Lei Xu


【21】Hierarchical Motion Captioning Utilizing External Text Data Source
标题:利用外部文本数据源的分层运动字幕
链接:https://arxiv.org/abs/2509.01471

作者:eite, Yu Xiao


【22】Hierarchical Maximum Entropy via the Renormalization Group
标题:通过重正化群的分层最大熵
链接:https://arxiv.org/abs/2509.01424

作者:sadi
备注:20 pages


【23】Accelerating PDE Solvers with Equation-Recast Neural Operator Preconditioning
标题:通过方程重铸神经运算符预处理加速DOE求解器
链接:https://arxiv.org/abs/2509.01416

作者:ng, Md Hossain Sahadath, Huihua Yang, Shaowu Pan, Wei Ji


【24】ABCD-LINK: Annotation Bootstrapping for Cross-Document Fine-Grained Links
标题:ABCD-LINK:跨文档细粒度链接的注释引导
链接:https://arxiv.org/abs/2509.01387

作者:sch, Ilia Kuznetsov, Tom Hope, Iryna Gurevych


【25】Multitask Battery Management with Flexible Pretraining
标题:具有灵活预训练的多任务电池管理
链接:https://arxiv.org/abs/2509.01323

作者:Jiali Chen, Jingzhao Zhang, Guannan He, Xuebing Han, Minggao Ouyang


【26】LongCat-Flash Technical Report
标题:LongCat-Flash技术报告
链接:https://arxiv.org/abs/2509.01322

作者:ongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu, Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong, Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan, Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jianchao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang, Jiyuan He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He, Liang Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen Guo, Liqi Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen, Mingxiang Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun, Qi Gu, Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng, Ruichen Shao, Rumei Li, Shizhe Wu, Shuai Liang


【27】What Expressivity Theory Misses: Message Passing Complexity for GNNs
标题:表现性理论错过了什么:GNN的消息传递复杂性
链接:https://arxiv.org/abs/2509.01254

作者:mper, Tom Wollschläger, Stephan Günnemann


【28】Preserving Vector Space Properties in Dimensionality Reduction: A Relationship Preserving Loss Framework
标题:在维度约简中保留载体空间性质:一个关系保留损失框架
链接:https://arxiv.org/abs/2509.01198

作者:wurm, Alexander Kovalenko


【29】REFRAG: Rethinking RAG based Decoding
标题:REFRAG:重新思考基于RAG的解码
链接:https://arxiv.org/abs/2509.01092

作者: Lin, Aritra Ghosh, Bryan Kian Hsiang Low, Anshumali Shrivastava, Vijai Mohan


【30】REFINESTAT: Efficient Exploration for Probabilistic Program Synthesis
标题:REFINESTat:概率程序综合的有效探索
链接:https://arxiv.org/abs/2509.01082

作者:nda, Shubham Ugare, Sasa Misailovic
备注:RefineStat constrains LM decoding with statistical validity checks and uses diagnostic-guided resampling (priors/likelihoods) to transform small LMs' drafts into correct, reliable probabilistic programs that can match or surpass closed-source models


【31】Any-Order Flexible Length Masked Diffusion
标题:任意阶可变长度掩蔽扩散
链接:https://arxiv.org/abs/2509.01025

作者:im, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngotiaoco, Sitan Chen, Michael Albergo
备注:Preprint


【32】AI-driven Dispensing of Coral Reseeding Devices for Broad-scale Restoration of the Great Barrier Reef
标题:人工智能驱动的珊瑚重新播种设备的分发,以大规模恢复大堡礁
链接:https://arxiv.org/abs/2509.01019

作者:Raine, Benjamin Moshirian, Tobias Fischer
备注:6 pages, 3 figures


【33】MEPT: Mixture of Expert Prompt Tuning as a Manifold Mapper
标题:MEPT:混合了专家提示调整作为管道映射器
链接:https://arxiv.org/abs/2509.00996

作者:ng, Guangyan Sun, Qifan Wang, Tong Geng, Sohail Dianat, Xiaotian Han, Raghuveer Rao, Xueling Zhang, Cheng Han, Lifu Huang, Dongfang Liu
备注:EMNLP 2025


【34】IoT-based Noise Monitoring using Mobile Nodes for Smart Cities
标题:使用移动节点实现智能城市基于物联网的噪音监控
链接:https://arxiv.org/abs/2509.00979

作者:kar Manthina (1), Shreyash Gujar (1), Sachin Chaudhari (1), Kavita Vemuri1 (1), Shivam Chhirolya (2) ((1) International Institute of Information Technology-Hyderabad (IIIT-H), India, (2) this http URL, India)


【35】Causal SHAP: Feature Attribution with Dependency Awareness through Causal Discovery
标题:因果SHAP:通过因果发现具有依赖意识的特征归因
链接:https://arxiv.org/abs/2509.00846

作者:Ng, Li Rong Wang, Siyuan Liu, Xiuyi Fan
备注:Published in 2025 International Joint Conference on Neural Networks (IJCNN). IEEE, 2025


【36】Queuing for Civility: Regulating Emotions and Reducing Toxicity in Digital Discourse
标题:尊重文明:调节情绪并减少数字话语中的毒性
链接:https://arxiv.org/abs/2509.00696

作者:rma, Shama Islam, Valeh Moghaddam, Adnan Anwar


【37】Revisiting Deep AC-OPF
标题:重温Deep AC-OPF
链接:https://arxiv.org/abs/2509.00655

作者:sin I. Dada, Neil D. Lawrence
备注:18 pages, 15 tables


【38】Missing Data Imputation using Neural Cellular Automata
标题:基于神经元胞自动机的缺失数据填补
链接:https://arxiv.org/abs/2509.00651

作者:Binh Nguyen, Man Ngo
备注:20 pages, 4 figures


【39】TimeCopilot
标题:时间控制
链接:https://arxiv.org/abs/2509.00616

作者:a, Reneé Rosillo


【40】TranCIT: Transient Causal Interaction Toolbox
标题:TranCIT:短暂因果相互作用收件箱
链接:https://arxiv.org/abs/2509.00602

作者:ri, Kaidi Shao, Shervin Safavi


【41】SQL-of-Thought: Multi-agentic Text-to-SQL with Guided Error Correction
标题:SQL思想:具有引导错误纠正的多代理文本到SQL
链接:https://arxiv.org/abs/2509.00581

作者:aturvedi, Aman Chadha, Laurent Bindschaedler


【42】MobiAgent: A Systematic Framework for Customizable Mobile Agents
标题:移动Agent:一个可定制的移动Agent系统框架
链接:https://arxiv.org/abs/2509.00531

作者:ng, Erhu Feng, Xi Zhao, Yisheng Zhao, Wangbo Gong, Jiahui Sun, Dong Du, Zhichao Hua, Yubin Xia, Haibo Chen


【43】Lagrangian Relaxation for Multi-Action Partially Observable Restless Bandits: Heuristic Policies and Indexability
标题:多行动部分可观察不安盗贼的拉格朗日松弛:启发式政策和可索引性
链接:https://arxiv.org/abs/2509.00415

作者:hram, Kesav Kaza
备注:13 pages


【44】Target-Oriented Single Domain Generalization
标题:面向目标的单领域综合
链接:https://arxiv.org/abs/2509.00351

作者:dari, Yuhong Guo


【45】Continuously Tempered Diffusion Samplers
标题:连续钢化扩散采样器
链接:https://arxiv.org/abs/2509.00316

作者:es, Bowen Jing, Peter Holderrieth, Tommi Jaakkola


【46】Estimating Parameter Fields in Multi-Physics PDEs from Scarce Measurements
标题:根据稀缺测量估计多物理偏出方程中的参数场
链接:https://arxiv.org/abs/2509.00203

作者:, Mahdi Masmoudi, Rami Gharbi, Nizar Lajnef, Vishnu Naresh Boddeti


【47】Democratizing Agentic AI with Fast Test-Time Scaling on the Edge
标题:通过边缘的快速测试时间扩展来民主化极端人工智能
链接:https://arxiv.org/abs/2509.00195

作者:Chen, Zhiwen Mo, Guanxi Lu, Shuang Liang, Lingxiao Ma, Wayne Luk, Hongxiang Fan


【48】FNODE: Flow-Matching for data-driven simulation of constrained multibody systems
标题:FNODE:用于受约束多体系统的数据驱动模拟的流量匹配
链接:https://arxiv.org/abs/2509.00183

作者:ng, Jingquan Wang, Dan Negrut
备注:36 pages, 19 figures


【49】Newton-Flow Particle Filters based on Generalized Cramér Distance
标题:基于广义克拉梅距离的牛顿流粒子过滤器
链接:https://arxiv.org/abs/2509.00182

作者:nebeck
备注:8 pages


【50】Playing Markov Games Without Observing Payoffs
标题:在不观察回报的情况下玩马尔科夫游戏
链接:https://arxiv.org/abs/2509.00179

作者:lin, Alon Cohen


【51】AEGIS : Automated Co-Evolutionary Framework for Guarding Prompt Injections Schema
标题:AEGIS:守卫提示注射模式的自动协同进化框架
链接:https://arxiv.org/abs/2509.00088

作者: Liu, Ching-Yu Hsu, Kuan-Yi Lee, Chi-An Fu, Hung-yi Lee


【52】Yet Unnoticed in LSTM: Binary Tree Based Input Reordering, Weight Regularization, and Gate Nonlinearization
标题:LSTM中尚未注意到:基于二元树的输入重新排序、权重正规化和门非线性化
链接:https://arxiv.org/abs/2509.00087

作者:oattari


【53】Experimental Assessment of a Multi-Class AI/ML Architecture for Real-Time Characterization of Cyber Events in a Live Research Reactor
标题:实时研究反应堆中网络事件实时描述的多类AI/ML架构的实验评估
链接:https://arxiv.org/abs/2509.00076

作者:ahm, Konstantinos Vasili, Vasileios Theos, Konstantinos Gkouliaras, William Richards, True Miller, Brian Jowers, Stylianos Chatzidakis


【54】ZeroQAT: Your Quantization-aware Training but Efficient
标题:ZeroQAT:您的量化感知训练,但高效
链接:https://arxiv.org/abs/2509.00031

作者:, Xiaoying Song, Jin Lu, Guoming Li, Jun Liu, Lingzi Hong, Caiwen Ding, Jundong Li, Xiaoming Zhai, Shaoyi Huang, Wei Niu, Geng Yuan


【55】QUBO-based training for VQAs on Quantum Annealers
标题:基于QUBO的VQA Quantum Annealers训练
链接:https://arxiv.org/abs/2509.01821

作者:costa, Guillermo Botella, Carlos Cano
备注:33 pages, 4 appendix, 14 images


【56】The Price of Sparsity: Sufficient Conditions for Sparse Recovery using Sparse and Sparsified Measurements
标题:稀疏性的代价:使用稀疏和稀疏测量进行稀疏恢复的充分条件
链接:https://arxiv.org/abs/2509.01809

作者:haabouni, David Gamarnik


【57】Real-Time Applicability of Emulated Virtual Circuits for Tokamak Plasma Shape Control
标题:仿真虚拟电路用于Tokamak等离子体形状控制的实时适用性
链接:https://arxiv.org/abs/2509.01789

作者:estany (1), Alasdair Ross (1), Adriano Agnello (1), Aran Garrod (1), Nicola C. Amorisco (2), George K. Holt (1), Kamran Pentland (2), James Buchanan (2) ((1) STFC Hartree Centre, (2) UK Atomic Energy Authority)
备注:6 pages, 4 figures, as submitted to CCTA25


【58】Multimodal Generative Flows for LHC Jets
标题:LHC喷气式飞机的多峰生成流
链接:https://arxiv.org/abs/2509.01736

作者: Faroughy, Manfred Opper, Cesar Ojeda
备注:Submitted to NeurIPS 2025 ML4PS workshop


【59】Preconditioned Regularized Wasserstein Proximal Sampling
标题:预条件正规Wasserstein近端采样
链接:https://arxiv.org/abs/2509.01685

作者:an, Stanley Osher, Wuchen Li


【60】Sampling as Bandits: Evaluation-Efficient Design for Black-Box Densities
标题:作为强盗抽样:黑匣子密度的评估高效设计
链接:https://arxiv.org/abs/2509.01437

作者:subara, Andrew Duncan, Simon Cotter, Konstantinos Zygalakis


【61】Double Descent and Overparameterization in Particle Physics Data
标题:粒子物理数据中的双重下降和过度参数化
链接:https://arxiv.org/abs/2509.01397

作者:Vigl, Lukas Heinrich
备注:4 pages, 3 figures


【62】Regime-Switching Langevin Monte Carlo Algorithms
标题:状态切换Langevin Monte Carlo算法
链接:https://arxiv.org/abs/2509.00941

作者:ng, Yingli Wang, Lingjiong Zhu
备注:50 pages, 8 figures


【63】Quantum Causality: Resolving Simpson's Paradox with $\mathcal{DO}$-Calculus
链接:https://arxiv.org/abs/2509.00744

作者:ang


【64】The Nondecreasing Rank
标题:不递减的排名
链接:https://arxiv.org/abs/2509.00265

作者:Cormack
备注:29 pages, 6 figures


【65】Probit Monotone BART
标题:Probit单调BART
链接:https://arxiv.org/abs/2509.00263

作者:Fisher
备注:6 pages, 1 figure


【66】Friend or Foe
标题:朋友还是敌人
链接:https://arxiv.org/abs/2509.00123

作者: Cherendichenko, Josephine Solowiej-Wedderburn, Laura M. Carroll, Eric Libby


【67】Migration as a Probe: A Generalizable Benchmark Framework for Specialist vs. Generalist Machine-Learned Force Fields in Doped Materials
标题:迁移作为一种探针:掺入材料中专家与通才机器学习力场的可推广基准框架
链接:https://arxiv.org/abs/2509.00090

作者:aulette Clancy


【68】ChipChat: Low-Latency Cascaded Conversational Agent in MLX
标题:ChipChat:MLX中的低延迟级联对话代理
链接:https://arxiv.org/abs/2509.00078

作者 :ikhomanenko, Luke Carlson, Richard He Bai, Zijin Gu, Han Tran, Zakaria Aldeneh, Yizhe Zhang, Ruixiang Zhang, Huangjie Zheng, Navdeep Jaitly
备注:ASRU 2025


机器翻译由腾讯交互翻译提供,仅供参考

点击“阅读原文”获取带摘要的学术速递

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/186313
 
102 次点击