社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  chatgpt

颠覆BI的,不是增强分析,而是ChatGPT!

互联网er的早读课 • 1 年前 • 154 次点击  

商业智能(BI)的发展阶段,当前能达成共识的是分为三代技术,每一代由解决方案提供的可访问性、速度、数据集大小和洞察质量来定义。

一、BI 1.0-传统商业智能

传统商业智能被认为是最古老的 BI 版本,也是最不友好的。

传统的 BI 建立在需要 IT 专业人员聚合数据和构建 OLAP 多维数据集以进行分析,传统的 BI 交付报告和静态仪表板作为其主要输出。

从手动从数据库中提取数据并手动清理数据,到构建模型、挖掘数据以及生成整个组织的部门和团队所需的数据丰富的报告,即一切都由专家处理。

最大的问题是需要数周时间才能为业务提供关键洞察,因为需要 IT 来设计模型和报告。由于该系统仅提供查询的回顾性视图,因此无法提供预测性见解。因此,决策者最终只能“凭直觉”寻找新的机会和解决重大问题的方法。

二、BI 2.0-自助商业智能

自助式商业智能 (SSBI) 解决方案对传统数据分析模型进行了重大升级。最值得注意的是,它们允许数据分析师和其他业务用户使用 IT 构建的模型创建自己的报告和数据可视化。组织中的每个人都可以按需访问,这种 BI 方法使用户能够创建临时报告、提出后续问题,并手动更深入地挖掘洞察以获得更有针对性的信息。

不幸的是,自助服务仍然无法解决最后一英里的问题,因为它用于数据探索的可视化界面使用传统的拖放式度量和维度,这对业务用户来说很复杂。

随着数据量和复杂性的增加,使用自助式 BI 工具手动分析数据的每个组合以找到重要见解变得不大现实,即使对于专家数据分析师也是如此。

三、BI 3.0-增强分析

作为下一代商业智能,增强分析以几种不同的方式改进了自助服务模型。

Gartner指出,增强分析是使用机器学习和人工智能等支持技术来协助数据准备、数据发现、洞察生成和洞察解释,以增强人们在分析和 BI 平台中探索和分析数据的方式。

Gartner这么解释还是很抽象,因此我继续网上搜集资料想理解到底是个什么东东,大家的解释总结起来无非如下:

在数据准备阶段,借助增强的分析工具,其可以借助算法检测机制,自动对数据进行分析、标记、注释并清洁以进行可靠的分析,自动将来自多个来源的数据整合在一起,自动生成数据目录,元数据和数据血缘,所需时间仅为手动操作时间的一小部分。

在洞察发现阶段,通过增强分析,普通人可以使用自然语言和语音输入来进行查询,增强分析通过算法自动找到数据中的规律,自动生成模型,自动从数据中找到模式和规律来针对性的回答问题。

在见解分享阶段,通过增强分析,使用自然语言生成,增强分析平台实时提供见解, 这些见解包括对自然语言查询的直接回答和回答的推理,或者将决策直接传入生产和办公应用。

四、BI 4.0-ChatGPT

增强分析似乎很强大,但概念提出这么多年,有强大的产品出现吗?没有,为什么?

虽然早期的人工智能(AI)技术在数据分析和其他领域取得了一定的成就,正如增强分析中提到的那些能力,但它们在理解复杂的自然语言和生成有意义的文本方面的能力仍然有限,也就是说,人们使用增强分析的门槛其实挺高的。

老板要分析数据,还得直接找数据分析师提出问题,数据分析师再把老板的问题转化成对BI增强分析的要求,这个转化过程是漫长的,数据分析从端到端的全业务流程的角度来看,整个流程是割裂的,一会儿在线上,比如利用BI在线分析问题,一会儿在线下,比如提出问题,接收问题,输出答案,数据分析这个业务的数字化转型并不彻底,因此,AI对数据分析师的替代作用并不是很大。

然而,随着GPT系列等自然语言处理(NLP)技术的不断发展,ChatGPT这类先进的AI模型已经能够在很大程度上理解自然语言,并生成连贯、准确的文本。

1、老板可以直接在线用自然语言向ChatGPT提出问题,ChatGPT可以很好地理解老板的要求,把问题转化成需求和目标。

2、数据分析师在接到需求和目标后,可以充分利用ChatGPT的自动分析能力,提供有针对性的数据探索和分析建议,从而减轻自己的工作负担。

3、ChatGPT可以根据数据分析结果生成详细的分析报告,解释关键发现、趋势和预测,并且可以提供自然语言的方式,在线解答老板各种问题,完成数据分析的最后一公里,这种体验是以前没法想象的。

最近出了一个基于GPT的ChatPDF的应用,你只要导入PDF文档,它就自动为你分析出结果,并且可以在线解答任何问题,显然这是未来数据分析的一种形式。

这也许能解释为什么人工智能刚出现的时候,少有人提出人工智能可以替代数据分析师,但ChatGPT出来后,这种声音就多了的原因。

最近某乎列出了最容易被chatgpt替代的十大工作岗位,分别是客服、平面设计师、翻译人员、教师、财务职位(财务分析师和个人财务顾问)、会计师、 技术工作(编码员、计算机程序员、软件工程师、数据分析师)、媒体工作(广告、内容创作、技术写作、新闻)、法律行业工作(律师助理、法律助理)及市场研究分析师,数据分析师赫然在列。

我并不认为ChatGPT能替代数据分析师这个职业,因为数据分析师拥有的很多高级技能是ChatGPT还难以具备的,包括:

1、复杂型分析:很多复杂情况缺乏足够的数据支撑,需要数据分析师具备深入的领域知识和技能才能做出判断,这些能力目前超出了ChatGPT的范围。

2、变化型分析:数据分析师需要应对不断变化的业务需求和问题,这需要批判性思维、创新能力和对业务的理解,而这些能力尚不在ChatGPT的能力范围内。

3、探讨型分析:很多问题需要数据分析师与团队成员、管理层和客户进行有效沟通,在充分交互中解释和展示分析结果,这种沟通和协作能力是AI难以替代的。

我曾经认为BI领域不再有什么发展前途,但ChatGPT给我上了一课,有了ChatGPT,也许数据分析的范式都会发生改变,ChatGPT,是数据分析数字化转型的关键。

👇


1ChatGPTMidjourney+
2ChatG PTMidjourney
3200+
4

99100100499

30 20



来源 | 大鱼的据人生(ID:dayu_data

作者 | 讨厌的大鱼先生编辑 | 时刻

内容仅代表作者独立观点,不代表早读课立场



Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/154869
 
154 次点击