社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

《基于模型的辅助深度学习:用于自适应弹性目标跟踪和电磁干扰(EMI)识别》美空军最新报告

专知智能防务 • 2 年前 • 364 次点击  
本报告概述了我们在基于模型的自适应目标跟踪以及识别来自电磁干扰(EMI)源的卫星欺骗和干扰攻击方面所做的研究工作。我们假设可以利用不同电磁干扰源的射频(RF)特征来识别和跟踪主动和被动电磁干扰源。射频信号被输入一个基于模型的深度神经网络(DNN),该网络可对不同物体进行分类和跟踪。
我们的初步结果表明,对于有源电磁干扰源,即使用不同调制方案发射射频信号的源,使用 DNN 识别电磁干扰源射频调制方案的准确性在很大程度上取决于射频信号的质量,而射频信号的质量又是信道的函数。特别是,如果信道是视距信道,且信噪比(SNR)较大,则调制类型的分类准确率很高(> 95%)。另一方面,如果信道参数未知和/或波动较大,信噪比较低,则分类准确率较低(< 60%)。调制类型识别的性能使我们得出结论,在现实世界中基于调制类型的目标跟踪将非常困难。因此,这项研究的主要工作集中在使用有源雷达对无源信号源进行分类,并以人员计数系统为原型。
我们没有使用模拟,而是在实验室建立了一个小规模的测试环境来验证假设。我们提出的人员计数系统使用多个发射天线,通过发送毫米波雷达啁啾扫描环境。物体反弹回来的信号由多个接收天线接收、处理并存储到数字数据库中。然后,我们对数字数据进行特征提取,并将特征输入卷积神经网络,以进行物体分类和跟踪。在这些实验中,我们将行走的人视为移动物体。我们的初步结果表明,在有限的环境中(如实验室环境),卷积神经网络可以利用射频信号准确识别不同的物体(> 95%)。
图 4. 从射频信号中提取特征。特征/物体包含已识别物体的数量、其多普勒速度、其 x、y、z 位置和相对信噪比。
专知便捷查看

便捷下载,请关注专知智能防务公众号(点击上方关注)

  • 公众号 回复 EMI” 就可以获取《《基于模型的辅助深度学习:用于自适应弹性目标跟踪和电磁干扰(EMI)识别》美空军最新报告》专知下载链接


  • 欢迎微信扫一扫加专知助手,咨询使用专知,定制服务合作


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI(AI与军事、医药、公安等)主题干货知识资料!

点击“阅读原文”,了解使用专知,查看获取100000+AI主题知识资料

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/161526