11月9日最新Stata大会PPT(附2023全球各处Stata大会PPT议程网址收藏)
本文主要收藏截止目前已经举办的Stata大会,并且在Stata官网已经公布PPT的网址链接,供大家学习!
文章链接无法打开的,直接阅读原文进行查看!
1、2023 Stata Economics Virtual Symposium
时间:9 November
本次大会包含了异质性DID新命令以及ddml双重机器学习相关的演讲。
详见
异质性的双重差分估计和did_multiplegt_dyn 包的 Stata 实现
Difference-in-Differences Estimators of Intertemporal Treatment Effects (stata.com)
pystacked 和 ddml:在 Stata 中用于预测和因果推理的机器学习Econ23_Schaffer_ddml.pdf (stata.com)
2、2023 Stata Biostatistics and Epidemiology Virtual Symposium | Stata
相关议程直接点击大会名称即可
时间:23 FEBRUARY 2023
部分PPT
- https://www.stata.com/symposiums/biostatistics-and-epidemiology23/slides/Bio23_Valeri.pdf
3、2023 UK Stata Conference | Stata
论文集:
使用 listtab 和 docxtab 自定义 Markdown 和 .docx 表格
Stata 中机器学习命令的回顾:性能和可用性评估https://www.stata.com/meeting/uk23/slides/UK23_Cerulli.pdf
pystacked 和 ddml:在 Stata 中用于预测和因果推理的机器学习https://www.stata.com/meeting/uk23/slides/UK23_Schaffer_ddml.pdf
异质性DID估计https://www.stata.com/meeting/uk23/slides/UK23_Pinzon.pdf
4、2023 Spanish Stata Conference | Stata
5、2023 Oceania Stata Conference | Stata
使用 Stata 实现高级数据可视化
- https://www.stata.com/meeting/oceania23/slides/Oceania23_Naqvi.pdf
Stata 17 中差异的差异简介
- https://www.stata.com/meeting/oceania23/slides/Oceania23_Huber.pdf
6、2023 Northern European Stata Conference | Stata
异质性双重差分估计
- https://www.stata.com/meeting/northern-european23/slides/Northern_Europe23_Pinzon.pdf
7、2023 Mexican Stata Conference | Stata
8、2023 Stata Conference Stanford | Stata
异质性双重差分估计
Stata 的广义 2SLS 过程
- US23_Suarez_Chavarria.pdf
spgen:在 Stata 中创建空间滞后变量
使用 Stata 进行最佳策略学习
9、2023 Canadian Stata Conference | Stata
Jackknife 方法
10、2023 Chinese Stata Conference | Stata
Stata 差异的异质性DID
- https://www.stata.com/meeting/china23-Uone-Tech/slides/China23_Liu.pdf
其他主题:
11、2023 Colombian Stata Conference | Stata
Difference estimation in heterogeneous differences in Stata
Machine learning for time-series structures using Stata and Python
12、2023 French Stata Conference | Stata
Heterogeneous difference in differences in Stata
13、2023 German Stata Conference | Stata
使用 Stata 进行因果推断和处理效应分解