社区所有版块导航
Python
python开源   Django   Python   DjangoApp   pycharm  
DATA
docker   Elasticsearch  
aigc
aigc   chatgpt  
WEB开发
linux   MongoDB   Redis   DATABASE   NGINX   其他Web框架   web工具   zookeeper   tornado   NoSql   Bootstrap   js   peewee   Git   bottle   IE   MQ   Jquery  
机器学习
机器学习算法  
Python88.com
反馈   公告   社区推广  
产品
短视频  
印度
印度  
Py学习  »  机器学习算法

Nat. Commun.│基于传感器内自适应机器学习的全集成可延展器件平台——助力康复监测

两江科技评论 • 1 年前 • 275 次点击  


欢迎课题组投递中文宣传稿,投稿方式见文末

撰稿|由课题组供稿

导读


临床上,喉部病症的检测与术后的康复评估通常依赖于X射线造影或者电子喉镜来观察喉部状况,尤其对于食团标志物流速、容积率、吞咽节律等信息的监测。通常受场景限制的X造影会导致病患和医护长达30分钟的射线辐射,而造价昂贵的(依赖进口,单根逾3000元)电子喉镜是侵入式的极易造成患者的不适,导致监测过程中因为梨状窝位置的肌肉闭合形成严重的视域遮蔽问题。


针对上述问题,近日,西安电子科技大学王卫东教授、厦门大学高立波副教授、香港大学陆洋教授以及宾州州立大学程寰宇教授联合唐都医院耳鼻喉科主任赵大庆教授和第四军医大学张杨教授等多位合作者,报道了一种用于喉部康复监测的具有传感器内自适应机器学习能力的全集成且独立可拉伸的器件平台。成果以“A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation”为题在国际知名学术期刊《自然•通讯》(Nature Communications)上发表西电机电工程学院徐洪成博士为论文第一作者,西安电子科技大学王卫东教授、厦门大学高立波副教授、香港大学陆洋教授以及宾州州立大学程寰宇教授为论文的通讯作者,西安电子科技大学机电工程学院为论文第一署名单位。

研究亮点

图1 全集成独立可延展的喉部集成器件平台设计及原理示意图


该平台通过机电协同和一体集成设计赋予器件系统可延展性和电通路,利用混合集成制造技术将界面低阻抗且亲肤的凝胶电极、三轴加速度传感器以及可延展的信号采集/处理/无线通信电路集成到同一贴片器件,该器件表现出与皮肤贴合良好的机械顺应性(器件拉伸杨氏模量E=89.5 kPa)、优越的拉伸能力(~30%),并且由于具有喉部肌肉电、振动信号无线采集的能力,可以贴附与喉部实现对吞咽、发声、咳嗽、饮水、心脏节律和胸腔扩张等多种皮上原位信号的获取,结合基于机器学习的类二维卷积提取器对喉部13种原始一维特征的二维训练,可以在新的受试者中仍能实现90%以上的特征识别自适应能力。由于该器件平台优秀的柔软性和无线多模采集能力,在临床上对肌无力患者和喉癌术后患者进行了喉部的贴附测量,相较于医护人员凭借电子喉镜的视觉观察结果,该平台同样对患者标志物节律和误吸情况都有清晰的动态俘获,表现出其潜在的应用价值。


正常人及肌无力与喉癌病人喉部特征信息监测

总结与展望


未来,该研究团队将对此项技术开展深入研究,并将该器件平台作为医疗器械推向临床应用,为咽喉功能障碍患者,如咽喉癌术后疗效及功能评估,甚至渐冻症患者发声提供便捷有效的技术手段。


文章链接:

https://www.nature.com/articles/s41467-023-43664-7

免责声明:本文旨在传递更多科研资讯及分享,所有其他媒、网来源均注明出处,如涉及版权问题,请作者第一时间后台联系,我们将协调进行处理,所有来稿文责自负,两江仅作分享平台。转载请注明出处,如原创内容转载需授权,请联系下方微信号。

Python社区是高质量的Python/Django开发社区
本文地址:http://www.python88.com/topic/165120
 
275 次点击