下载包 Enhanced module to estimate latent class logit models via EM algorithm ssc install lclogit2, replace
文献来源 latent class logit model。理论详见原文3.2节。
Choi, H., et al. (2024). Heterogeneous public preferences for undergrounding high-voltage power transmission lines: The case of Seoul metropolitan area in South KoreaAppendix F. Supplementary data 【数据+Stata】1. 求类别数量 示例代码 cd C : \Download \1 - s2 . 0 - S0140988324001567 - mmc1 \survey_data_code
import exc conjoint_data , first clear
* find number of classes ( Q )
forv i = 2 ( 1 ) 7 {
lclogit2 Choice if cohort_wide == 1 , ///
rand ( TOW_per DEEP_m LOC_res LOC_edu VIS_no COVER_yes Cost_per ) ///
gr ( gid ) id ( ID ) ncl ( ` i ') ///
mem ( Tower_exist Transmission_500 House_own Income_H House_member Kids Male Age10 Edu p_conflict p_inclusion p_health p_eco )
mat b = e ( b )
mat ic = nullmat ( ic ) \ ` e ( nclasses ) ', `e(ll)' , ` = colsof ( b ) ', `e(aic)' , ` e ( caic ) ', `e(bic)'
}
mat colnames ic = "Classes" "LLF" "Nparam" "AIC" "CAIC" "BIC"
matlist ic , name ( columns )
得到结果 Classes LLF Nparam AIC CAIC BIC
----------------------------------------------------------------
2 -5752.812 28 11561.62 11711.98 11683.98
3 -5440.236 49 10978.47 11241.6 11192.6
4 -5341.238 70 10822.48 11198.37 11128.37
5 -5254.592 91 10691.18 11179.85 11088.85
6 -5202.171 112 10628.34 11229.77 11117.77
7 -5161.597 133 10589.19 11303.39 11170.39
期刊排版 2. 估计参数 示例代码 lclogit2 Choice if cohort_wide == 1 , ///
rand ( TOW_per DEEP_m LOC_res LOC_edu VIS_no COVER_yes Cost_per ) ///
gr ( gid ) id ( ID ) ncl ( 4 ) ///
mem ( Tower_exist Transmission_500 House_own Income_H House_member Kids Male Age10 Edu p_inclusion p_health p_econ )
mat start = e ( b )
lclogitml2 Choice if cohort_wide == 1 , ///
rand ( TOW_per DEEP_m LOC_res LOC_edu VIS_no COVER_yes Cost_per ) ///
gr ( gid ) id ( ID ) ncl ( 4 ) ///
mem ( Tower_exist Transmission_500 House_own Income_H House_member Kids Male Age10 Edu p_conflict p_inclusion p_health p_econ )
* class probability
lclogitpr2 cp_Result , cp
* estimate wtp
lclogitwtp2 , cost ( Cost_per )
得到结果
Latent class model with 4 latent classes
Choice model parameters and average classs shares
-------------------------------------------------
Variable | Class1 Class2 Class3 Class4
-------------+-----------------------------------
TOW_per | 0.010 0.005 0.025 0.014
DEEP_m | 0.047 0.008 0.312 0.039
LOC_res | -2.420 0.174 -0.826 0.842
LOC_edu | -2.507 0.175 -0.631 0.618
VIS_no | 0.372 0.010 0.943 0.189
COVER_yes | 0.267 0.328 0.706 0.659
Cost_per | -0.076 -0.444 -0.084 -0.005
-------------+-----------------------------------
Class Share | 0.161 0.341 0.127 0.371
-------------------------------------------------
Class membership model parameters : Class4 = Reference class
-------------------------------------------------
Variable | Class1 Class2 Class3 Class4
-------------+-----------------------------------
Coef of |
Tower_exist | -0.816 -0.452 -0.528 0.000
Transmis~500 | -0.306 -0.110 -0.788 0.000
House_own | 0.276 -0.122 -0.668 0.000
Income_H | -0.107 -0.297 -0.296 0.000
House_member | -0.044 -0.031 0.022 0.000
Kids | -1.302 -0.727 -0.179 0.000
Male | -0.319 0.006 -0.761 0.000
Age10 | -0.221 0.073 -0.026 0.000
Edu | 0.000 -0.013 0.053 0.000
p_inclusion | 0.639 -0.229 0.800 0.000
p_health | -0.034 0.159 0.205 0.000
p_econ | 0.037 -0.067 -0.195 0.000
_cons | -1.178 2.877 -2.081 0.000
-------------------------------------------------
Note: Model estimated via EM algorithm
期刊排版
(完)